YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Solar Selective Volumetric Receivers for Harnessing Solar Thermal Energy

    Source: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 006::page 62702
    Author:
    Khullar, Vikrant
    ,
    Tyagi, Himanshu
    ,
    Otanicar, Todd P.
    ,
    Hewakuruppu, Yasitha L.
    ,
    Taylor, Robert A.
    DOI: 10.1115/1.4039214
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Given the largely untapped solar energy resource, there has been an ongoing international effort to engineer improved solar-harvesting technologies. Toward this, the possibility of engineering a solar selective volumetric receiver (SSVR) has been explored in the present study. Common heat transfer liquids (HTLs) typically have high transmissivity in the visible-near infrared (VIS-NIR) region and high emission in the midinfrared region, due to the presence of intramolecular vibration bands. This precludes them from being solar absorbers. In fact, they have nearly the opposite properties from selective surfaces such as cermet, TiNOX, and black chrome. However, liquid receivers which approach the radiative properties of selective surfaces can be realized through a combination of anisotropic geometries of metal nanoparticles (or broad band absorption multiwalled carbon nanotubes (MWCNTs)) and transparent heat mirrors. SSVRs represent a paradigm shift in the manner in which solar thermal energy is harnessed and promise higher thermal efficiencies (and lower material requirements) than their surface absorption-based counterparts. In the present work, the “effective” solar absorption to infrared emission ratio has been evaluated for a representative SSVR employing copper nanospheroids/MWCNTs and Sn-In2O3 based heat mirrors. It has been found that a solar selectivity comparable to (or even higher than) cermet-based Schott receiver is achievable through control of the cut-off solar selective wavelength. Theoretical calculations show that the thermal efficiency of Sn-In2O3 based SSVR is 6–7% higher than the cermet-based Schott receiver. Furthermore, stagnation temperature experiments have been conducted on a laboratory-scale SSVR to validate the theoretical results. It has been found that higher stagnation temperatures (and hence higher thermal efficiencies) compared to conventional surface absorption-based collectors are achievable through proper control of nanoparticle concentration.
    • Download: (4.332Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Solar Selective Volumetric Receivers for Harnessing Solar Thermal Energy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251758
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorKhullar, Vikrant
    contributor authorTyagi, Himanshu
    contributor authorOtanicar, Todd P.
    contributor authorHewakuruppu, Yasitha L.
    contributor authorTaylor, Robert A.
    date accessioned2019-02-28T11:01:02Z
    date available2019-02-28T11:01:02Z
    date copyright4/11/2018 12:00:00 AM
    date issued2018
    identifier issn0022-1481
    identifier otherht_140_06_062702.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251758
    description abstractGiven the largely untapped solar energy resource, there has been an ongoing international effort to engineer improved solar-harvesting technologies. Toward this, the possibility of engineering a solar selective volumetric receiver (SSVR) has been explored in the present study. Common heat transfer liquids (HTLs) typically have high transmissivity in the visible-near infrared (VIS-NIR) region and high emission in the midinfrared region, due to the presence of intramolecular vibration bands. This precludes them from being solar absorbers. In fact, they have nearly the opposite properties from selective surfaces such as cermet, TiNOX, and black chrome. However, liquid receivers which approach the radiative properties of selective surfaces can be realized through a combination of anisotropic geometries of metal nanoparticles (or broad band absorption multiwalled carbon nanotubes (MWCNTs)) and transparent heat mirrors. SSVRs represent a paradigm shift in the manner in which solar thermal energy is harnessed and promise higher thermal efficiencies (and lower material requirements) than their surface absorption-based counterparts. In the present work, the “effective” solar absorption to infrared emission ratio has been evaluated for a representative SSVR employing copper nanospheroids/MWCNTs and Sn-In2O3 based heat mirrors. It has been found that a solar selectivity comparable to (or even higher than) cermet-based Schott receiver is achievable through control of the cut-off solar selective wavelength. Theoretical calculations show that the thermal efficiency of Sn-In2O3 based SSVR is 6–7% higher than the cermet-based Schott receiver. Furthermore, stagnation temperature experiments have been conducted on a laboratory-scale SSVR to validate the theoretical results. It has been found that higher stagnation temperatures (and hence higher thermal efficiencies) compared to conventional surface absorption-based collectors are achievable through proper control of nanoparticle concentration.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSolar Selective Volumetric Receivers for Harnessing Solar Thermal Energy
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4039214
    journal fristpage62702
    journal lastpage062702-15
    treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian