YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Correlation of Heat Transfer Coefficients for the Laminar Natural Convection in a Circular Finned-Tube Heat Exchanger

    Source: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 003::page 31801
    Author:
    Kang, Hie Chan
    ,
    Chang, Se-Myong
    DOI: 10.1115/1.4038189
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study proposes an empirical correlation for laminar natural convection applicable to external circular finned-tube heat exchangers with wide range of configuration parameters. The transient temperature response of the heat exchangers was used to obtain the heat transfer coefficient, and the experimental data with their characteristic lengths are discussed. The data lie in the range from 1 to 1000 for Rayleigh numbers based on the fin spacing: the ratio of fin height to tube diameter ranges from 0.1 to 0.9, and the ratio of fin pitch to height ranges from 0.13 to 2.6. Sixteen sets of finned-tube electroplated with nickel–chrome were tested. The convective heat transfer coefficients on the heat exchangers were measured by elimination of the thermal radiation effect from the heat exchanger surfaces. The Nusselt number was correlated with a newly suggested composite curve formula, which converges to the quarter power of the Rayleigh number for a single cylinder case. The proposed characteristic length for the Rayleigh number is the fin pitch while that for the Nusselt number is mean flow length, defined as half the perimeter of the mean radial position inside the flow region bounded by the tube surface and two adjacent fins. The flow is regarded as laminar, which covers heat exchangers from a single horizontal cylinder to infinite parallel disks. Consequently, the result of curve fitting for the experimental data shows the reasonable physical interpretation as well as the good quantitative agreement with the correction factors.
    • Download: (1.748Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Correlation of Heat Transfer Coefficients for the Laminar Natural Convection in a Circular Finned-Tube Heat Exchanger

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251747
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorKang, Hie Chan
    contributor authorChang, Se-Myong
    date accessioned2019-02-28T11:00:58Z
    date available2019-02-28T11:00:58Z
    date copyright12/6/2017 12:00:00 AM
    date issued2018
    identifier issn0022-1481
    identifier otherht_140_03_031801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251747
    description abstractThis study proposes an empirical correlation for laminar natural convection applicable to external circular finned-tube heat exchangers with wide range of configuration parameters. The transient temperature response of the heat exchangers was used to obtain the heat transfer coefficient, and the experimental data with their characteristic lengths are discussed. The data lie in the range from 1 to 1000 for Rayleigh numbers based on the fin spacing: the ratio of fin height to tube diameter ranges from 0.1 to 0.9, and the ratio of fin pitch to height ranges from 0.13 to 2.6. Sixteen sets of finned-tube electroplated with nickel–chrome were tested. The convective heat transfer coefficients on the heat exchangers were measured by elimination of the thermal radiation effect from the heat exchanger surfaces. The Nusselt number was correlated with a newly suggested composite curve formula, which converges to the quarter power of the Rayleigh number for a single cylinder case. The proposed characteristic length for the Rayleigh number is the fin pitch while that for the Nusselt number is mean flow length, defined as half the perimeter of the mean radial position inside the flow region bounded by the tube surface and two adjacent fins. The flow is regarded as laminar, which covers heat exchangers from a single horizontal cylinder to infinite parallel disks. Consequently, the result of curve fitting for the experimental data shows the reasonable physical interpretation as well as the good quantitative agreement with the correction factors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Correlation of Heat Transfer Coefficients for the Laminar Natural Convection in a Circular Finned-Tube Heat Exchanger
    typeJournal Paper
    journal volume140
    journal issue3
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4038189
    journal fristpage31801
    journal lastpage031801-10
    treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian