YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nucleate Boiling Comparison between Teflon-Coated Plain Copper and Cu-HTCMC in Water

    Source: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 008::page 80904
    Author:
    Jun, Seongchul
    ,
    Kim, Jin Sub
    ,
    Lee, Jungho
    ,
    You, Seung M.
    DOI: 10.1115/1.4040396
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The hydrophobic, Teflon-coated surfaces on plain copper and Cu-HTCMC (High temperature Thermally Conductive Microporous Coating) compared on pool boiling heat transfer of water. The HTCMC was created by sintering of copper powders with the average particle size of 67 µm and about 300 µm coating thickness that showed a good boiling heat transfer and the CHF enhancement from the previous study at saturation of water [1]. The Teflon-coated surfaces were created by coating of Amorphous Fluoroplastic (AF) 2400 resin on both plain copper and Cu-HTCMC. The static angles of both surfaces showed hydrophobic as about 120-130°. The departure bubble sizes created by merged bubbles of both surfaces are comparable as about 7 mm at 5 kW/m2 and the sizes are increased as heat flux increases. However, unlike to the plain surface, the smaller bubbles on Cu-HTCMC are not observed at the heat flux of 5 kW/m2 because the number of nucleation sites created in the porous structure are huge smaller bubbles are merged as soon as they grow from pores. As heat flux reaches the surfaces are covered by vapor film and reached the critical heat flux (CHF) at much lower heat fluxes compared to hydrophilic surfaces but the CHF values of Teflon-coated Cu-HTCMC is 640 kW/m2 and the value is more than tenfold higher than that of Teflon-coated plain copper.
    • Download: (518.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nucleate Boiling Comparison between Teflon-Coated Plain Copper and Cu-HTCMC in Water

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251745
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorJun, Seongchul
    contributor authorKim, Jin Sub
    contributor authorLee, Jungho
    contributor authorYou, Seung M.
    date accessioned2019-02-28T11:00:57Z
    date available2019-02-28T11:00:57Z
    date copyright7/2/2018 12:00:00 AM
    date issued2018
    identifier issn0022-1481
    identifier otherht_140_08_080904.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251745
    description abstractThe hydrophobic, Teflon-coated surfaces on plain copper and Cu-HTCMC (High temperature Thermally Conductive Microporous Coating) compared on pool boiling heat transfer of water. The HTCMC was created by sintering of copper powders with the average particle size of 67 µm and about 300 µm coating thickness that showed a good boiling heat transfer and the CHF enhancement from the previous study at saturation of water [1]. The Teflon-coated surfaces were created by coating of Amorphous Fluoroplastic (AF) 2400 resin on both plain copper and Cu-HTCMC. The static angles of both surfaces showed hydrophobic as about 120-130°. The departure bubble sizes created by merged bubbles of both surfaces are comparable as about 7 mm at 5 kW/m2 and the sizes are increased as heat flux increases. However, unlike to the plain surface, the smaller bubbles on Cu-HTCMC are not observed at the heat flux of 5 kW/m2 because the number of nucleation sites created in the porous structure are huge smaller bubbles are merged as soon as they grow from pores. As heat flux reaches the surfaces are covered by vapor film and reached the critical heat flux (CHF) at much lower heat fluxes compared to hydrophilic surfaces but the CHF values of Teflon-coated Cu-HTCMC is 640 kW/m2 and the value is more than tenfold higher than that of Teflon-coated plain copper.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNucleate Boiling Comparison between Teflon-Coated Plain Copper and Cu-HTCMC in Water
    typeJournal Paper
    journal volume140
    journal issue8
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4040396
    journal fristpage80904
    journal lastpage080904-1
    treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian