YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling of Anisotropic Scattering of Thermal Radiation in Pulverized Coal Combustion

    Source: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 006::page 62701
    Author:
    Gronarz, Tim
    ,
    Johansson, Robert
    ,
    Kneer, Reinhold
    DOI: 10.1115/1.4038912
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this work, the effect of applying different approximations for the scattering phase function on radiative heat transfer in pulverized coal combustion is investigated. Isotropic scattering, purely forward scattering, and a δ-Eddington approximation are compared with anisotropic scattering based on Mie theory calculations. To obtain suitable forward scattering factors for the δ-Eddington approximation, a calculation procedure based on Mie theory is introduced to obtain the forward scattering factors as a function of temperature, particle size, and size of the scattering angle. Also, an analytical expression for forward scattering factors is presented. The influence of the approximations on wall heat flux and radiative source term in a heat transfer calculation is compared for combustion chambers of varying size. Two numerical models are applied: A model based on the discrete transfer method (DTRM) representing the reference solution and a model based on the finite volume method (FVM) to also investigate the validity of the obtained results with a method often applied in commercial CFD programs. The results show that modeling scattering as purely forward or isotropic is not sufficient in coal combustion simulations. The influence of anisotropic scattering on heat transfer can be well described with a δ-Eddington approximation and properly calculated forward scattering factors. Results obtained with both numerical methods show good agreement and give the same tendencies for the applied scattering approximations.
    • Download: (2.089Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling of Anisotropic Scattering of Thermal Radiation in Pulverized Coal Combustion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251708
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorGronarz, Tim
    contributor authorJohansson, Robert
    contributor authorKneer, Reinhold
    date accessioned2019-02-28T11:00:44Z
    date available2019-02-28T11:00:44Z
    date copyright3/9/2018 12:00:00 AM
    date issued2018
    identifier issn0022-1481
    identifier otherht_140_06_062701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251708
    description abstractIn this work, the effect of applying different approximations for the scattering phase function on radiative heat transfer in pulverized coal combustion is investigated. Isotropic scattering, purely forward scattering, and a δ-Eddington approximation are compared with anisotropic scattering based on Mie theory calculations. To obtain suitable forward scattering factors for the δ-Eddington approximation, a calculation procedure based on Mie theory is introduced to obtain the forward scattering factors as a function of temperature, particle size, and size of the scattering angle. Also, an analytical expression for forward scattering factors is presented. The influence of the approximations on wall heat flux and radiative source term in a heat transfer calculation is compared for combustion chambers of varying size. Two numerical models are applied: A model based on the discrete transfer method (DTRM) representing the reference solution and a model based on the finite volume method (FVM) to also investigate the validity of the obtained results with a method often applied in commercial CFD programs. The results show that modeling scattering as purely forward or isotropic is not sufficient in coal combustion simulations. The influence of anisotropic scattering on heat transfer can be well described with a δ-Eddington approximation and properly calculated forward scattering factors. Results obtained with both numerical methods show good agreement and give the same tendencies for the applied scattering approximations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling of Anisotropic Scattering of Thermal Radiation in Pulverized Coal Combustion
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4038912
    journal fristpage62701
    journal lastpage062701-11
    treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian