YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaporation of a Liquid Droplet in the Presence of a Nanoparticle

    Source: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 005::page 54501
    Author:
    Arun Kumar, V.
    ,
    Sathian, Sarith P.
    DOI: 10.1115/1.4038477
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Nonequilibrium molecular dynamics (MD) simulations have been performed to understand the evaporation of a liquid droplet in the presence of a solid nanoparticle. The influence of solid–liquid interaction strength (εsl) on the evaporation properties was addressed. The system consists of a solid nanoparticle (platinum) engulfed in a droplet (argon) in Argon vapor environment. After the equilibration of this nanoparticle embedded droplet with its vapor, the boundary of this system is heated continuously to evaporate the droplet. It is observed that the addition of a nanoparticle to the droplet resulted in a slower evaporation rate when compared to that of a pure droplet. It was found that the evaporation rate of the droplet is decreased with increasing solid–liquid interaction strength (εsl) and those liquid atoms around the solid nanoparticle with higher εsl are able to delay evaporation even at higher temperature owing to its decreased interfacial resistance. In order to analyze further on the vibrational coupling of the solid and liquid atoms, the vibrational density of states (VDOS) of the solid atoms is studied. It is observed that the DOS of the solid atoms exhibited a higher population in the lower frequency range with the highest peak observed for a lower value of εsl. For low values of εsl, we observe a decrease in the overlap between the VDOS of the solid atom and the interfacial liquid atoms. It is observed that for higher values of εsl, the particle is able to retain a structured layer of liquid even at high temperature and also a higher heat input is necessitated to break the interaction strength of the liquid molecules around the solid nanoparticle, which makes it possible in delaying the complete evaporation of the droplet.
    • Download: (2.089Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaporation of a Liquid Droplet in the Presence of a Nanoparticle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251652
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorArun Kumar, V.
    contributor authorSathian, Sarith P.
    date accessioned2019-02-28T11:00:26Z
    date available2019-02-28T11:00:26Z
    date copyright1/17/2018 12:00:00 AM
    date issued2018
    identifier issn0022-1481
    identifier otherht_140_05_054501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251652
    description abstractNonequilibrium molecular dynamics (MD) simulations have been performed to understand the evaporation of a liquid droplet in the presence of a solid nanoparticle. The influence of solid–liquid interaction strength (εsl) on the evaporation properties was addressed. The system consists of a solid nanoparticle (platinum) engulfed in a droplet (argon) in Argon vapor environment. After the equilibration of this nanoparticle embedded droplet with its vapor, the boundary of this system is heated continuously to evaporate the droplet. It is observed that the addition of a nanoparticle to the droplet resulted in a slower evaporation rate when compared to that of a pure droplet. It was found that the evaporation rate of the droplet is decreased with increasing solid–liquid interaction strength (εsl) and those liquid atoms around the solid nanoparticle with higher εsl are able to delay evaporation even at higher temperature owing to its decreased interfacial resistance. In order to analyze further on the vibrational coupling of the solid and liquid atoms, the vibrational density of states (VDOS) of the solid atoms is studied. It is observed that the DOS of the solid atoms exhibited a higher population in the lower frequency range with the highest peak observed for a lower value of εsl. For low values of εsl, we observe a decrease in the overlap between the VDOS of the solid atom and the interfacial liquid atoms. It is observed that for higher values of εsl, the particle is able to retain a structured layer of liquid even at high temperature and also a higher heat input is necessitated to break the interaction strength of the liquid molecules around the solid nanoparticle, which makes it possible in delaying the complete evaporation of the droplet.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEvaporation of a Liquid Droplet in the Presence of a Nanoparticle
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4038477
    journal fristpage54501
    journal lastpage054501-7
    treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian