YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prediction of the Turbine Tip Convective Heat Flux Using Discrete Green's Functions

    Source: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 007::page 71703
    Author:
    Andreoli, Valeria
    ,
    Cuadrado, David G.
    ,
    Paniagua, Guillermo
    DOI: 10.1115/1.4039182
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The heat fluxes across the turbine tip gap are characterized by large unsteady pressure gradients and shear from the viscous effects. The classical Newton heat convection equation, based on the turbine inlet total temperature, is inadequate. Previous research from our team relied on the use of the adiabatic wall temperature. In this paper, we propose an alternative approach to predict the convective heat transfer problem across the turbine rotor tip using discrete Green's functions (DGF). The linearity of the energy equation in the solid domain with constant thermal properties can be applied with a superposition technique to measure the data extracted from flow simulations to determine the Green's function distribution. The DGF is a matrix of coefficients that relate the temperature spatial (GF) distribution with the heat flux. This methodology is first applied to a backward facing step, validated using experimental data. The final aim of this paper is to demonstrate the method in the rotor turbine tip. A turbine stage at engine-like conditions was assessed using cfd software. The heat flux pulses were applied at different locations in the rotor tip geometry, and the increment of temperature in this zone was evaluated for different clearances, with a consequent variation of the DGF coefficients. Ultimately, a detailed uncertainty analysis of the methodology was included based on the magnitude of the heat flux pulses used in the DGF coefficients calculation and the uncertainty in the experimental measurements of the wall temperature.
    • Download: (2.813Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prediction of the Turbine Tip Convective Heat Flux Using Discrete Green's Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251649
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorAndreoli, Valeria
    contributor authorCuadrado, David G.
    contributor authorPaniagua, Guillermo
    date accessioned2019-02-28T11:00:25Z
    date available2019-02-28T11:00:25Z
    date copyright3/30/2018 12:00:00 AM
    date issued2018
    identifier issn0022-1481
    identifier otherht_140_07_071703.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251649
    description abstractThe heat fluxes across the turbine tip gap are characterized by large unsteady pressure gradients and shear from the viscous effects. The classical Newton heat convection equation, based on the turbine inlet total temperature, is inadequate. Previous research from our team relied on the use of the adiabatic wall temperature. In this paper, we propose an alternative approach to predict the convective heat transfer problem across the turbine rotor tip using discrete Green's functions (DGF). The linearity of the energy equation in the solid domain with constant thermal properties can be applied with a superposition technique to measure the data extracted from flow simulations to determine the Green's function distribution. The DGF is a matrix of coefficients that relate the temperature spatial (GF) distribution with the heat flux. This methodology is first applied to a backward facing step, validated using experimental data. The final aim of this paper is to demonstrate the method in the rotor turbine tip. A turbine stage at engine-like conditions was assessed using cfd software. The heat flux pulses were applied at different locations in the rotor tip geometry, and the increment of temperature in this zone was evaluated for different clearances, with a consequent variation of the DGF coefficients. Ultimately, a detailed uncertainty analysis of the methodology was included based on the magnitude of the heat flux pulses used in the DGF coefficients calculation and the uncertainty in the experimental measurements of the wall temperature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePrediction of the Turbine Tip Convective Heat Flux Using Discrete Green's Functions
    typeJournal Paper
    journal volume140
    journal issue7
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4039182
    journal fristpage71703
    journal lastpage071703-11
    treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian