YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Mini/Micro/Nanostructures on Filmwise Condensation of Low-Surface-Tension Fluids

    Source: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 010::page 102402
    Author:
    Aili, Ablimit
    ,
    Ge, QiaoYu
    ,
    Zhang, TieJun
    DOI: 10.1115/1.4040143
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Micro/nanostructured surfaces have been widely explored to enhance condensation heat transfer over the past decades. When there is no flooding, micro/nanostructures can enable dropwise condensation by reducing solid-droplet adhesion. However, micro/nanostructures have mixed effects on filmwise condensation because the structures can simultaneously thin the condensate film and increase the fluid–solid friction. Although oil infusion of structured surfaces has recently been shown to render filmwise condensation dropwise in many cases, challenges remain in the case of extremely low-surface-tension fluids. This work aims to provide a unified experimental platform and study the impact of mini/micro/nanostructures on condensation heat transfer of low-surface-tension fluids in a customized environmental chamber. We first investigate the effect of microstructures, hydrophobic coating, as well as oil infusion on the filmwise condensation of a low-surface-tension fluid, e.g., refrigerant, on microporous aluminum surfaces. And we show that for low-surface-tension condensates, microstructures, hydrophobic coating, or oil infusion do not play a considerable role in enhancing or deteriorating heat transfer. Next, we study how the addition of nanostructures affects the condensation performance of the refrigerant on copper mini-fin structures. It is found that nanostructures slightly deteriorate the condensation performance due to the dominance of solid–liquid friction, although the performance of these mini-fins with nanostructured surfaces is still better than that of the mini-pin-fins. These results provide guidelines of designing mini/micro/nanoscale surface structures for enhanced condensation applications.
    • Download: (3.550Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Mini/Micro/Nanostructures on Filmwise Condensation of Low-Surface-Tension Fluids

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251638
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorAili, Ablimit
    contributor authorGe, QiaoYu
    contributor authorZhang, TieJun
    date accessioned2019-02-28T11:00:21Z
    date available2019-02-28T11:00:21Z
    date copyright5/25/2018 12:00:00 AM
    date issued2018
    identifier issn0022-1481
    identifier otherht_140_10_102402.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251638
    description abstractMicro/nanostructured surfaces have been widely explored to enhance condensation heat transfer over the past decades. When there is no flooding, micro/nanostructures can enable dropwise condensation by reducing solid-droplet adhesion. However, micro/nanostructures have mixed effects on filmwise condensation because the structures can simultaneously thin the condensate film and increase the fluid–solid friction. Although oil infusion of structured surfaces has recently been shown to render filmwise condensation dropwise in many cases, challenges remain in the case of extremely low-surface-tension fluids. This work aims to provide a unified experimental platform and study the impact of mini/micro/nanostructures on condensation heat transfer of low-surface-tension fluids in a customized environmental chamber. We first investigate the effect of microstructures, hydrophobic coating, as well as oil infusion on the filmwise condensation of a low-surface-tension fluid, e.g., refrigerant, on microporous aluminum surfaces. And we show that for low-surface-tension condensates, microstructures, hydrophobic coating, or oil infusion do not play a considerable role in enhancing or deteriorating heat transfer. Next, we study how the addition of nanostructures affects the condensation performance of the refrigerant on copper mini-fin structures. It is found that nanostructures slightly deteriorate the condensation performance due to the dominance of solid–liquid friction, although the performance of these mini-fins with nanostructured surfaces is still better than that of the mini-pin-fins. These results provide guidelines of designing mini/micro/nanoscale surface structures for enhanced condensation applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Mini/Micro/Nanostructures on Filmwise Condensation of Low-Surface-Tension Fluids
    typeJournal Paper
    journal volume140
    journal issue10
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4040143
    journal fristpage102402
    journal lastpage102402-7
    treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian