YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elliptical Shape Hole-Pattern Seals Performance Evaluation Using Design of Experiments Technique1

    Source: Journal of Fluids Engineering:;2018:;volume( 140 ):;issue: 007::page 71101
    Author:
    Jin, Hanxiang
    ,
    Untaroiu, Alexandrina
    DOI: 10.1115/1.4039249
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Hole-pattern annular gas seals have two distinct flow regions: an annular jet-flow region between the rotor and stator, and cylindrical indentions in the stator that serve as cavities where flow recirculation occurs. As the working fluid enters the cavities and recirculates, its kinetic energy is reduced, resulting in a reduction of leakage flow rate through the seal. The geometry of the cylindrical cavities has a significant effect on the overall performance of the seal. In this study, the effects of elliptical shape hole pattern geometry on the leakage and dynamic response performance of an industry-relevant hole-pattern seal design are investigated using a combination of computational fluid dynamics (CFD), hybrid bulk flow-CFD analysis, and design of experiments (DOEs) technique. The design space was defined by varying the values of five geometrical characteristics: the major and minor radius of hole, the angle between the major axis and the axis of the seal, the spacing between holes along the seal axis, and hole spacing in the circumferential direction. This detailed analysis allowed for a greater understanding of the interaction effects from varying all of these design parameters together as opposed to studying them one variable at a time. Response maps generated from the calculated results demonstrate the effects of each design parameter on seal leakage as well as the co-dependence between the design parameters. The data from this analysis were also used to generate linear regression models that demonstrate how these parameters affect the leakage rate and the dynamic coefficients, including the effective damping.
    • Download: (7.424Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elliptical Shape Hole-Pattern Seals Performance Evaluation Using Design of Experiments Technique1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251510
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorJin, Hanxiang
    contributor authorUntaroiu, Alexandrina
    date accessioned2019-02-28T10:59:35Z
    date available2019-02-28T10:59:35Z
    date copyright3/16/2018 12:00:00 AM
    date issued2018
    identifier issn0098-2202
    identifier otherfe_140_07_071101.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251510
    description abstractHole-pattern annular gas seals have two distinct flow regions: an annular jet-flow region between the rotor and stator, and cylindrical indentions in the stator that serve as cavities where flow recirculation occurs. As the working fluid enters the cavities and recirculates, its kinetic energy is reduced, resulting in a reduction of leakage flow rate through the seal. The geometry of the cylindrical cavities has a significant effect on the overall performance of the seal. In this study, the effects of elliptical shape hole pattern geometry on the leakage and dynamic response performance of an industry-relevant hole-pattern seal design are investigated using a combination of computational fluid dynamics (CFD), hybrid bulk flow-CFD analysis, and design of experiments (DOEs) technique. The design space was defined by varying the values of five geometrical characteristics: the major and minor radius of hole, the angle between the major axis and the axis of the seal, the spacing between holes along the seal axis, and hole spacing in the circumferential direction. This detailed analysis allowed for a greater understanding of the interaction effects from varying all of these design parameters together as opposed to studying them one variable at a time. Response maps generated from the calculated results demonstrate the effects of each design parameter on seal leakage as well as the co-dependence between the design parameters. The data from this analysis were also used to generate linear regression models that demonstrate how these parameters affect the leakage rate and the dynamic coefficients, including the effective damping.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleElliptical Shape Hole-Pattern Seals Performance Evaluation Using Design of Experiments Technique1
    typeJournal Paper
    journal volume140
    journal issue7
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4039249
    journal fristpage71101
    journal lastpage071101-16
    treeJournal of Fluids Engineering:;2018:;volume( 140 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian