Show simple item record

contributor authorWhite, Martin T.
contributor authorMarkides, Christos N.
contributor authorSayma, Abdulnaser I.
date accessioned2019-02-28T10:58:41Z
date available2019-02-28T10:58:41Z
date copyright6/15/2018 12:00:00 AM
date issued2018
identifier issn0742-4795
identifier othergtp_140_09_091703.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251358
description abstractIn this paper, the effect of working-fluid replacement within an organic Rankine cycle (ORC) turbine is investigated by evaluating the performance of two supersonic stators operating with different working fluids. After designing the two stators, intended for operation with R245fa and Toluene with stator exit absolute Mach numbers of 1.4 and 1.7, respectively, the performance of each stator is evaluated using ANSYS cfx. Based on the principle that the design of a given stator is dependent on the amount of flow turning, it is hypothesized that a stator's design point can be scaled to alternative working fluids by conserving the Prandtl–Meyer function and the polytropic index within the nozzle. A scaling method is developed and further computational fluid dynamics (CFD) simulations for the scaled operating points verify that the Mach number distributions within the stator, and the nondimensional velocity triangles at the stator exit, remain unchanged. This confirms that the method developed can predict stator performance following a change in the working fluid. Finally, a study investigating the effect of working-fluid replacement on the thermodynamic cycle is completed. The results show that the same turbine could be used in different systems with power outputs varying between 17 and 112 kW, suggesting the potential of matching the same turbine to multiple heat sources by tailoring the working fluid selected. This further implies that the same turbine design could be deployed in different applications, thus leading to economy-of-scale improvements.
publisherThe American Society of Mechanical Engineers (ASME)
titleWorking-Fluid Replacement in Supersonic Organic Rankine Cycle Turbines
typeJournal Paper
journal volume140
journal issue9
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4038754
journal fristpage91703
journal lastpage091703-10
treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record