| description abstract | In this work, the surface wrinkle modulation mechanism of the three-dimensional (3D) film/substrate system caused by biaxial eigenstrains in the films is studied. A theoretical model based on the energy minimization of the 3D wrinkled film/substrate system is proposed which shows that the change of the surface wrinkle amplitude is determined by four dimensionless parameters, i.e., the eigenstrain in the film, plane strain modulus ratio between the film and substrate, film thickness to wrinkle wavelength ratio, and initial wrinkle amplitude to wavelength ratio. The surface wrinkle amplitude decreases (even almost flat) upon contraction eigenstrain in the film, while increases for that of expansion eigenstrain. Parallel finite element method (FEM) simulations are carried out which have good agreements with the theoretical predictions, and experimental verifications are also presented to verify the findings. Besides, different patterns of 3D surface wrinkles are studied and the similar surface wrinkle modulation is also observed. The findings presented herein may shed useful insights for the design of complex stretchable electronics, cosmetic products, soft devices and the fabrication of 3D complex structures. | |