Show simple item record

contributor authorLigrani, Phil
contributor authorRen, Zhong
contributor authorLiberatore, Federico
contributor authorPatel, Rajeshriben
contributor authorSrinivasan, Ram
contributor authorHo, Yin-Hsiang
date accessioned2019-02-28T10:57:51Z
date available2019-02-28T10:57:51Z
date copyright12/6/2017 12:00:00 AM
date issued2018
identifier issn0742-4795
identifier othergtp_140_05_051901.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251222
description abstractNew experimental data are provided for full-coverage effusion cooling and impingement array cooling, as applied simultaneously onto the respective external and internal surfaces of a single instrumented test plate. For the effusion cooled surface, presented are spatially resolved distributions of surface adiabatic film cooling effectiveness, and surface heat transfer coefficients. For the impingement cooled surface, presented are spatially resolved distributions of surface Nusselt numbers. Impingement jet arrays at different jet Reynolds numbers, from 7930 to 18,000, are employed. Experimental data are given for spanwise and streamwise impingement hole spacing such that coolant jet hole centerlines are located midway between individual effusion hole entrances. For the effusion cooling, streamwise hole spacing and spanwise hole spacing (normalized by effusion hole diameter) are 15 and 4, respectively. Effusion hole angle is 25 deg, and effusion plate thickness is 3.0 effusion hole diameters. In regard to the impingement cooled cold-side surface of the effusion plate, associated surface Nusselt number variations provide evidence that impingement jets are turned and redirected as they cross the impingement passage, just prior to the entrance of coolant into individual effusion holes. In regard to the effusion cooled hot-side surface of the effusion plate, when compared at particular values of injectant and mainstream Reynolds numbers, streamwise location x/de and blowing ratio BR, significantly increased thermal protection is provided when the effusion coolant is provided by an array of impingement cooling jets (compared to a cross flow channel supply arrangement).
publisherThe American Society of Mechanical Engineers (ASME)
titleDouble Wall Cooling of a Full-Coverage Effusion Plate, Including Internal Impingement Array Cooling
typeJournal Paper
journal volume140
journal issue5
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4038248
journal fristpage51901
journal lastpage051901-9
treeJournal of Engineering for Gas Turbines and Power:;2018:;volume( 140 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record