description abstract | The concept of the novel short helical combustor (SHC) was investigated in our previous work (Ariatabar et al., 2016, “Short Helical Combustor: Concept Study of an Innovative Gas Turbine Combustor With Angular Air Supply,” ASME J. Eng. Gas Turbines Power, 138(3), p. 031503 and Ariatabar et al., 2017, “Short Helical Combustor: Dynamic Flow Analysis in a Combustion System With Angular Air Supply,” ASME J. Eng. Gas Turbines Power, 139(4), p. 041505). Based on the insight gained from these previous investigations, we propose a generic design improvement to address the tremendous loss of initial angular momentum as well as inhomogeneous flow and temperature field at the outlet of the SHC. In the present paper, the main features of this design are introduced. It is shown that a three-dimensional shaping of the sidewalls, the dome, and the liners can effectively counteract the suboptimal interaction of the swirl flames with these surrounding walls. As a result, the flow at the outlet of the combustor features a high angular momentum and exhibits a uniform flow angle and temperature field. The insight gained from these generic investigations, and the resulting design optimization provides a useful framework for further industrial optimization of the SHC. | |