YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rheological Properties and Ignition and Combustion Characteristics of Biochar–Algae–Water Slurry Fuels

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 006::page 62203
    Author:
    Zhu, Mingming
    ,
    Zhang, Zhezi
    ,
    Liu, Pengfei
    ,
    Zhang, Dongke
    DOI: 10.1115/1.4039320
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study examined the rheological properties, ignition, and combustion characteristics of biochar–algae–water (BAW) slurry fuels. A pine sawdust biochar with a median particle size (D50) of approximately 12 μm and algae Chlorella vulgaris in dry powder form with D50 of approximately 19 μm were used. The BAW slurries with a constant solid loading of 40 wt % and algae/biochar ratio varying from 0 to 0.2 by weight were prepared. The apparent viscosity was measured using a Haake VT550 cone-and-plate viscometer. The stability of the slurries was characterized using a “drop rod” method. Ignition and combustion characteristics of the slurries were studied using a suspended single-droplet technique. A single droplet of a slurry fuel with a diameter ranging from 0.5 mm to 1.5 mm was suspended on a silicon carbide fibre and burned in air at 1023 K in an electrically heated tube furnace. The ignition and combustion processes of the droplet were recorded using a CCD camera at 200 fps. The ignition delay time, burnout time, and burning rate were determined. The BAW slurries showed shear-thinning flow behavior. The slurries had higher viscosity and greater stability at higher algae proportion in the solid. The ignition and combustion process of BAW slurries followed the sequence of water evaporation, devolatilization, ignition, and combustion of the solid residue. The combustion of the residual solid was diffusion controlled under the experimental conditions and the burning rates of the BAW slurry droplets ranged from 0.15 to 0.25 mm2 s−1.
    • Download: (969.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rheological Properties and Ignition and Combustion Characteristics of Biochar–Algae–Water Slurry Fuels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251035
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorZhu, Mingming
    contributor authorZhang, Zhezi
    contributor authorLiu, Pengfei
    contributor authorZhang, Dongke
    date accessioned2019-02-28T10:56:40Z
    date available2019-02-28T10:56:40Z
    date copyright3/14/2018 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_06_062203.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251035
    description abstractThis study examined the rheological properties, ignition, and combustion characteristics of biochar–algae–water (BAW) slurry fuels. A pine sawdust biochar with a median particle size (D50) of approximately 12 μm and algae Chlorella vulgaris in dry powder form with D50 of approximately 19 μm were used. The BAW slurries with a constant solid loading of 40 wt % and algae/biochar ratio varying from 0 to 0.2 by weight were prepared. The apparent viscosity was measured using a Haake VT550 cone-and-plate viscometer. The stability of the slurries was characterized using a “drop rod” method. Ignition and combustion characteristics of the slurries were studied using a suspended single-droplet technique. A single droplet of a slurry fuel with a diameter ranging from 0.5 mm to 1.5 mm was suspended on a silicon carbide fibre and burned in air at 1023 K in an electrically heated tube furnace. The ignition and combustion processes of the droplet were recorded using a CCD camera at 200 fps. The ignition delay time, burnout time, and burning rate were determined. The BAW slurries showed shear-thinning flow behavior. The slurries had higher viscosity and greater stability at higher algae proportion in the solid. The ignition and combustion process of BAW slurries followed the sequence of water evaporation, devolatilization, ignition, and combustion of the solid residue. The combustion of the residual solid was diffusion controlled under the experimental conditions and the burning rates of the BAW slurry droplets ranged from 0.15 to 0.25 mm2 s−1.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRheological Properties and Ignition and Combustion Characteristics of Biochar–Algae–Water Slurry Fuels
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4039320
    journal fristpage62203
    journal lastpage062203-6
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian