YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Evaluation of a Highly Inhibitive Water-Based Drilling Fluid for Ultralow Temperature Wells

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 001::page 12906
    Author:
    Zhao, Xin
    ,
    Qiu, Zhengsong
    ,
    Wang, Mingliang
    ,
    Huang, Weian
    ,
    Zhang, Shifeng
    DOI: 10.1115/1.4037712
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Drilling fluid with proper rheology, strong shale, and hydrate inhibition performance is essential for drilling ultralow temperature (as low as −5 °C) wells in deepwater and permafrost. In this study, the performance of drilling fluids together with additives for ultralow temperature wells has been evaluated by conducting the hydrate inhibition tests, shale inhibition tests, ultralow temperature rheology, and filtration tests. Thereafter, the formulation for a highly inhibitive water-based drilling fluid has been developed. The results show that 20 wt % NaCl can give at least a 16-h safe period for drilling operations at −5 °C and 15 MPa. Polyalcohol can effectively retard pore pressure transmission and filtrate invasion by sealing the wellbore above the cloud point, while polyetheramine can strongly inhibit shale hydration. Therefore, a combination of polyalcohol and polyetheramine can be used as an excellent shale stabilizer. The drilling fluid can prevent hydrate formation under both stirring and static conditions. Further, it can inhibit the swelling, dispersion, and collapse of shale samples, thereby enhancing wellbore stability. It has better rheological properties than the typical water-based drilling fluids used in onshore and offshore drilling at −5 °C to 75 °C. In addition, it can maintain stable rheology after being contaminated by 10 wt % NaCl, 1 wt % CaCl2, and 5 wt % shale cuttings. The drilling fluid developed in this study is therefore expected to perform well in drilling ultralow temperature wells.
    • Download: (2.366Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Evaluation of a Highly Inhibitive Water-Based Drilling Fluid for Ultralow Temperature Wells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251028
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorZhao, Xin
    contributor authorQiu, Zhengsong
    contributor authorWang, Mingliang
    contributor authorHuang, Weian
    contributor authorZhang, Shifeng
    date accessioned2019-02-28T10:56:38Z
    date available2019-02-28T10:56:38Z
    date copyright9/12/2017 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_01_012906.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251028
    description abstractDrilling fluid with proper rheology, strong shale, and hydrate inhibition performance is essential for drilling ultralow temperature (as low as −5 °C) wells in deepwater and permafrost. In this study, the performance of drilling fluids together with additives for ultralow temperature wells has been evaluated by conducting the hydrate inhibition tests, shale inhibition tests, ultralow temperature rheology, and filtration tests. Thereafter, the formulation for a highly inhibitive water-based drilling fluid has been developed. The results show that 20 wt % NaCl can give at least a 16-h safe period for drilling operations at −5 °C and 15 MPa. Polyalcohol can effectively retard pore pressure transmission and filtrate invasion by sealing the wellbore above the cloud point, while polyetheramine can strongly inhibit shale hydration. Therefore, a combination of polyalcohol and polyetheramine can be used as an excellent shale stabilizer. The drilling fluid can prevent hydrate formation under both stirring and static conditions. Further, it can inhibit the swelling, dispersion, and collapse of shale samples, thereby enhancing wellbore stability. It has better rheological properties than the typical water-based drilling fluids used in onshore and offshore drilling at −5 °C to 75 °C. In addition, it can maintain stable rheology after being contaminated by 10 wt % NaCl, 1 wt % CaCl2, and 5 wt % shale cuttings. The drilling fluid developed in this study is therefore expected to perform well in drilling ultralow temperature wells.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePerformance Evaluation of a Highly Inhibitive Water-Based Drilling Fluid for Ultralow Temperature Wells
    typeJournal Paper
    journal volume140
    journal issue1
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4037712
    journal fristpage12906
    journal lastpage012906-9
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian