YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Preparation and Characterization of Chemical Agents for Augmenting Injectivity in Low Permeability Reservoirs

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 003::page 32914
    Author:
    Zhao, Min
    ,
    Zhao, Xiutai
    ,
    Yang, Daoyong
    DOI: 10.1115/1.4038784
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, experimental techniques have been developed to prepare and characterize chemical agents for augmenting injectivity in low permeability reservoirs. First, chemical agents are selected, formulated, and optimized on the basis of interfacial tension (IFT), scale inhibition ratio, and clay particle size distribution and specific surface area. The spinning drop method is utilized to measure the IFT between crude oil and the formulated solution, while contact angle between brine and rock surface is measured to examine effect of the chemical agents on the rock wettability. Also, scale inhibition ratio and antiswelling ratio are, respectively, measured by performing static-state scale inhibition experiments and centrifugation experiments. Then, displacement experiments are conducted to evaluate injectivity improvement after one pore volume (PV) of such formulated chemical agents has been injected into a core plug. It is found that the optimized solution consists of 0.15 wt % fluorocarbon surfactant FC-117, 4.00 wt % isopropanol, 1.20 × 10−3 wt % scale inhibitor 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), and 1.50 wt % clay stabilizer diallyl dimethyl ammonium chloride (DMDAAC). The IFT between crude oil and the optimized solution can be reduced to 5.36 × 10−3 mN/m within a short time, while the scale inhibition ratio and antiswelling ratio are measured to be 94.83% and 86.96%, respectively. It is found from comprehensive evaluation experiments that such a formulated and optimized solution can not only alter the rock surface from oil-wet to water-wet but also reduce the scale formation of the reservoir brine. In addition, it is shown from displacement experiments that the pressure is decreased by 34.67% after the injection of such formulated solution. When the formulated solution contains 0–300,000 mg/L sodium chloride (NaCl) and 0–5000 mg/L calcium chloride (CaCl2) at 50–90 °C, the IFT between crude oil and the formulated solution can be reduced to lower than 10−2 mN/m.
    • Download: (2.229Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Preparation and Characterization of Chemical Agents for Augmenting Injectivity in Low Permeability Reservoirs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251026
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorZhao, Min
    contributor authorZhao, Xiutai
    contributor authorYang, Daoyong
    date accessioned2019-02-28T10:56:37Z
    date available2019-02-28T10:56:37Z
    date copyright1/22/2018 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_03_032914.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251026
    description abstractIn this paper, experimental techniques have been developed to prepare and characterize chemical agents for augmenting injectivity in low permeability reservoirs. First, chemical agents are selected, formulated, and optimized on the basis of interfacial tension (IFT), scale inhibition ratio, and clay particle size distribution and specific surface area. The spinning drop method is utilized to measure the IFT between crude oil and the formulated solution, while contact angle between brine and rock surface is measured to examine effect of the chemical agents on the rock wettability. Also, scale inhibition ratio and antiswelling ratio are, respectively, measured by performing static-state scale inhibition experiments and centrifugation experiments. Then, displacement experiments are conducted to evaluate injectivity improvement after one pore volume (PV) of such formulated chemical agents has been injected into a core plug. It is found that the optimized solution consists of 0.15 wt % fluorocarbon surfactant FC-117, 4.00 wt % isopropanol, 1.20 × 10−3 wt % scale inhibitor 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), and 1.50 wt % clay stabilizer diallyl dimethyl ammonium chloride (DMDAAC). The IFT between crude oil and the optimized solution can be reduced to 5.36 × 10−3 mN/m within a short time, while the scale inhibition ratio and antiswelling ratio are measured to be 94.83% and 86.96%, respectively. It is found from comprehensive evaluation experiments that such a formulated and optimized solution can not only alter the rock surface from oil-wet to water-wet but also reduce the scale formation of the reservoir brine. In addition, it is shown from displacement experiments that the pressure is decreased by 34.67% after the injection of such formulated solution. When the formulated solution contains 0–300,000 mg/L sodium chloride (NaCl) and 0–5000 mg/L calcium chloride (CaCl2) at 50–90 °C, the IFT between crude oil and the formulated solution can be reduced to lower than 10−2 mN/m.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePreparation and Characterization of Chemical Agents for Augmenting Injectivity in Low Permeability Reservoirs
    typeJournal Paper
    journal volume140
    journal issue3
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4038784
    journal fristpage32914
    journal lastpage032914-9
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian