YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comprehensive Investigation on the Effects of Biomass Particle Size in Cellulosic Biofuel Production

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 004::page 41804
    Author:
    Yang, Yang
    ,
    Zhang, Meng
    ,
    Wang, Donghai
    DOI: 10.1115/1.4039602
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Biofuels derived from cellulosic biomass offer one of the best near- to midterm alternatives to petroleum-based liquid transportation fuels. Biofuel conversion is mainly done through a biochemical pathway in which size reduction, pelleting, pretreatment, enzymatic hydrolysis, and fermentation are main processes. Many studies reveal that biomass particle size dictates the energy consumption in the size reduction. Biomass particle size also influences sugar yield in enzymatic hydrolysis, and biofuel yield in fermentation is approximately proportional to the former enzymatic hydrolysis sugar yield. Most reported studies focus on the effects of biomass particle size on a specific process; as a result, in the current literature, there is no commonly accepted guidance to select the overall optimum particle size in order to minimize the energy consumption and maximize sugar yield. This study presents a comprehensive experimental investigation converting three types of biomass (big bluestem, wheat straw, and corn stover) into fermentable sugars and studies the effects of biomass particle size throughout the multistep bioconversion. Three particle sizes (4 mm, 2 mm, and 1 mm) were produced by knife milling and were pelletized with an ultrasonic pelleting system. Dilute acid method was applied to pretreat biomass before enzymatic hydrolysis. Results suggested 2 mm is the optimum particle size to minimize energy consumption in size reduction and pelleting and to maximize sugar yield among the three particle sizes for big bluestem and wheat straw biomass. Nevertheless, there is no significant difference in sugar yield for corn stover for the three particle sizes.
    • Download: (1.932Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comprehensive Investigation on the Effects of Biomass Particle Size in Cellulosic Biofuel Production

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251005
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorYang, Yang
    contributor authorZhang, Meng
    contributor authorWang, Donghai
    date accessioned2019-02-28T10:56:28Z
    date available2019-02-28T10:56:28Z
    date copyright4/9/2018 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_04_041804.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251005
    description abstractBiofuels derived from cellulosic biomass offer one of the best near- to midterm alternatives to petroleum-based liquid transportation fuels. Biofuel conversion is mainly done through a biochemical pathway in which size reduction, pelleting, pretreatment, enzymatic hydrolysis, and fermentation are main processes. Many studies reveal that biomass particle size dictates the energy consumption in the size reduction. Biomass particle size also influences sugar yield in enzymatic hydrolysis, and biofuel yield in fermentation is approximately proportional to the former enzymatic hydrolysis sugar yield. Most reported studies focus on the effects of biomass particle size on a specific process; as a result, in the current literature, there is no commonly accepted guidance to select the overall optimum particle size in order to minimize the energy consumption and maximize sugar yield. This study presents a comprehensive experimental investigation converting three types of biomass (big bluestem, wheat straw, and corn stover) into fermentable sugars and studies the effects of biomass particle size throughout the multistep bioconversion. Three particle sizes (4 mm, 2 mm, and 1 mm) were produced by knife milling and were pelletized with an ultrasonic pelleting system. Dilute acid method was applied to pretreat biomass before enzymatic hydrolysis. Results suggested 2 mm is the optimum particle size to minimize energy consumption in size reduction and pelleting and to maximize sugar yield among the three particle sizes for big bluestem and wheat straw biomass. Nevertheless, there is no significant difference in sugar yield for corn stover for the three particle sizes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Comprehensive Investigation on the Effects of Biomass Particle Size in Cellulosic Biofuel Production
    typeJournal Paper
    journal volume140
    journal issue4
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4039602
    journal fristpage41804
    journal lastpage041804-7
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian