YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Secondary Spontaneous Combustion Characteristics of Coal Based on Programed Temperature Experiments

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 008::page 82204
    Author:
    Wang, Gang
    ,
    Liu, Qiqi
    ,
    Sun, Lulu
    ,
    Song, Xiang
    ,
    Du, Wenzhou
    ,
    Yan, Daocheng
    ,
    Wang, Yue
    DOI: 10.1115/1.4039659
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this report, the influence of pre-oxidation degree and ventilation flow on the parameters of spontaneous combustion of coal (temperature, gas concentration, and exothermic intensity) was studied in six sets of programed temperature experiments. The experimental results showed that the pre-oxidation exerted a positive effect on the spontaneous combustion parameters of coal in the early stage of coal-oxygen recombination reaction, but exerted an inhibitory effect in the later stage of coal-oxygen oxidation reaction. Air supply rate had a positive correlation with the initial oxidation of coal samples and 90 °C pre-oxidation spontaneous combustion parameters. Air supply rate had negative correlation with 140 °C pre-oxidation of coal samples. Meanwhile, secondary oxidation significantly reduced the characteristic temperature of coal. The critical temperature of each coal sample was 83.7 °C (coal sample 1-Y), 68.3 °C (coal sample 1-L), 69.6 °C (coal sample 1-G), 82.1 °C (Coal sample 2-Y), 70.4 °C (coal sample 2-L), and 70.0 °C (coal sample 2-G), and dry cracking temperature was 142.6 °C (coal sample 1-Y), 134.8 °C (coal sample 1-L), 136.2 °C (coal sample 1-G), 147.2 °C (coal sample 2-Y), 136.5 °C (coal sample 2-L), and 134.4 °C (coal sample 2-G). The curves of the characteristic parameters of primary and secondary oxidized coal showed exponential growth. And the oxidation process can be divided into three stages, the first stage (30 °C ∼ critical temperature), the second stage (critical temperature ∼ dry cracking temperature), and the third stage (over the dry temperature).
    • Download: (1011.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Secondary Spontaneous Combustion Characteristics of Coal Based on Programed Temperature Experiments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250990
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorWang, Gang
    contributor authorLiu, Qiqi
    contributor authorSun, Lulu
    contributor authorSong, Xiang
    contributor authorDu, Wenzhou
    contributor authorYan, Daocheng
    contributor authorWang, Yue
    date accessioned2019-02-28T10:56:22Z
    date available2019-02-28T10:56:22Z
    date copyright4/9/2018 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_08_082204.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250990
    description abstractIn this report, the influence of pre-oxidation degree and ventilation flow on the parameters of spontaneous combustion of coal (temperature, gas concentration, and exothermic intensity) was studied in six sets of programed temperature experiments. The experimental results showed that the pre-oxidation exerted a positive effect on the spontaneous combustion parameters of coal in the early stage of coal-oxygen recombination reaction, but exerted an inhibitory effect in the later stage of coal-oxygen oxidation reaction. Air supply rate had a positive correlation with the initial oxidation of coal samples and 90 °C pre-oxidation spontaneous combustion parameters. Air supply rate had negative correlation with 140 °C pre-oxidation of coal samples. Meanwhile, secondary oxidation significantly reduced the characteristic temperature of coal. The critical temperature of each coal sample was 83.7 °C (coal sample 1-Y), 68.3 °C (coal sample 1-L), 69.6 °C (coal sample 1-G), 82.1 °C (Coal sample 2-Y), 70.4 °C (coal sample 2-L), and 70.0 °C (coal sample 2-G), and dry cracking temperature was 142.6 °C (coal sample 1-Y), 134.8 °C (coal sample 1-L), 136.2 °C (coal sample 1-G), 147.2 °C (coal sample 2-Y), 136.5 °C (coal sample 2-L), and 134.4 °C (coal sample 2-G). The curves of the characteristic parameters of primary and secondary oxidized coal showed exponential growth. And the oxidation process can be divided into three stages, the first stage (30 °C ∼ critical temperature), the second stage (critical temperature ∼ dry cracking temperature), and the third stage (over the dry temperature).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSecondary Spontaneous Combustion Characteristics of Coal Based on Programed Temperature Experiments
    typeJournal Paper
    journal volume140
    journal issue8
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4039659
    journal fristpage82204
    journal lastpage082204-8
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian