YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Novel Coal-Steam Gasification With a Thermochemical Regenerative Process for Power Generation

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 009::page 92203
    Author:
    Wang, Dandan
    ,
    Li, Sheng
    ,
    Gao, Lin
    ,
    Wu, Handong
    ,
    Jin, Hongguang
    DOI: 10.1115/1.4039978
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, a novel high-efficiency coal gasification technology is proposed in which a regenerative unit is applied to recover syngas sensible heat to generate steam; then, the high-temperature steam is used to gasify coke from a pyrolyzer. Through such a thermochemical regenerative unit, the sensible heat with a lower energy level is upgraded into syngas chemical energy with a higher energy level; therefore, high cold gas efficiency (CGE) is expected from the proposed system. aspenplus software is selected to simulate the novel coal gasification system, and the key parameters are validated by experimentation. Then energy, exergy, and energy-utilization diagram (EUD) analyses are applied to disclose the plant performance enhancement mechanism. It is revealed that 83.2% of syngas sensible heat can be recovered into steam agent with the CGE upgraded to 90%. In addition, with the enhancement of CGE, the efficiency of an integrated gasification combined cycle (IGCC) based on the novel gasification system can be as high as 51.82%, showing a significant improvement compared to 45.2% in the general electric company (GE) gasification-based plant. In the meantime, the irreversible destruction of the gasification procedure is reduced to 25.7% through thermochemical reactions. The increase in the accepted energy level (Aea) and the decreases in the released energy level (Aed) and heat absorption (ΔH) contribute to the reduction in exergy destruction in the gasification process. Additionally, since the oxygen agent is no longer used in the IGCC, 34.5 MW exergy destruction in the air separation unit (ASU) is avoided.
    • Download: (1.427Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Novel Coal-Steam Gasification With a Thermochemical Regenerative Process for Power Generation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250989
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorWang, Dandan
    contributor authorLi, Sheng
    contributor authorGao, Lin
    contributor authorWu, Handong
    contributor authorJin, Hongguang
    date accessioned2019-02-28T10:56:21Z
    date available2019-02-28T10:56:21Z
    date copyright5/7/2018 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_09_092203.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250989
    description abstractIn this paper, a novel high-efficiency coal gasification technology is proposed in which a regenerative unit is applied to recover syngas sensible heat to generate steam; then, the high-temperature steam is used to gasify coke from a pyrolyzer. Through such a thermochemical regenerative unit, the sensible heat with a lower energy level is upgraded into syngas chemical energy with a higher energy level; therefore, high cold gas efficiency (CGE) is expected from the proposed system. aspenplus software is selected to simulate the novel coal gasification system, and the key parameters are validated by experimentation. Then energy, exergy, and energy-utilization diagram (EUD) analyses are applied to disclose the plant performance enhancement mechanism. It is revealed that 83.2% of syngas sensible heat can be recovered into steam agent with the CGE upgraded to 90%. In addition, with the enhancement of CGE, the efficiency of an integrated gasification combined cycle (IGCC) based on the novel gasification system can be as high as 51.82%, showing a significant improvement compared to 45.2% in the general electric company (GE) gasification-based plant. In the meantime, the irreversible destruction of the gasification procedure is reduced to 25.7% through thermochemical reactions. The increase in the accepted energy level (Aea) and the decreases in the released energy level (Aed) and heat absorption (ΔH) contribute to the reduction in exergy destruction in the gasification process. Additionally, since the oxygen agent is no longer used in the IGCC, 34.5 MW exergy destruction in the air separation unit (ASU) is avoided.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNovel Coal-Steam Gasification With a Thermochemical Regenerative Process for Power Generation
    typeJournal Paper
    journal volume140
    journal issue9
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4039978
    journal fristpage92203
    journal lastpage092203-9
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian