YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 005::page 52004
    Author:
    Sarkar, Jahar
    DOI: 10.1115/1.4038963
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A generalized methodology for pinch point design and optimization of subcritical and transcritical organic Rankine cycles (ORCs) using both wet and dry fluids is adopted in this study. The presented algorithm can predict the pinch point location in evaporator and condenser simultaneously and optimize the evaporator pressure for best performance with various heat source and sink conditions. Effects of pinch point temperature difference (PPTD), isentropic efficiency, subcooling, superheating and regenerator on the energy and economic performances are discussed for selected working fluids. System yields similar optimum design for both maximum power generation and minimum capital cost per unit power. At optimum condition, ammonia is best in terms of higher thermal efficiency and lower component size, R152a is best in terms of higher net power output and heat recovery efficiency (11.1%), and toluene is best in terms of lower capital cost and cost per unit power output (7060 $/kW). Effect of heat source and sink parameters on both energy and economic performances is significant. Contour plots are presented to select the best ORC design parameters for available heat source condition. PPTD and expander isentropic efficiency have significant effect on performances. However, the effect of subcooling, superheating and regenerator depends on working fluid.
    • Download: (1.909Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250956
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorSarkar, Jahar
    date accessioned2019-02-28T10:56:09Z
    date available2019-02-28T10:56:09Z
    date copyright1/31/2018 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_05_052004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250956
    description abstractA generalized methodology for pinch point design and optimization of subcritical and transcritical organic Rankine cycles (ORCs) using both wet and dry fluids is adopted in this study. The presented algorithm can predict the pinch point location in evaporator and condenser simultaneously and optimize the evaporator pressure for best performance with various heat source and sink conditions. Effects of pinch point temperature difference (PPTD), isentropic efficiency, subcooling, superheating and regenerator on the energy and economic performances are discussed for selected working fluids. System yields similar optimum design for both maximum power generation and minimum capital cost per unit power. At optimum condition, ammonia is best in terms of higher thermal efficiency and lower component size, R152a is best in terms of higher net power output and heat recovery efficiency (11.1%), and toluene is best in terms of lower capital cost and cost per unit power output (7060 $/kW). Effect of heat source and sink parameters on both energy and economic performances is significant. Contour plots are presented to select the best ORC design parameters for available heat source condition. PPTD and expander isentropic efficiency have significant effect on performances. However, the effect of subcooling, superheating and regenerator depends on working fluid.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4038963
    journal fristpage52004
    journal lastpage052004-8
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian