A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine CycleSource: Journal of Energy Resources Technology:;2018:;volume 140:;issue 005::page 52004Author:Sarkar, Jahar
DOI: 10.1115/1.4038963Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: A generalized methodology for pinch point design and optimization of subcritical and transcritical organic Rankine cycles (ORCs) using both wet and dry fluids is adopted in this study. The presented algorithm can predict the pinch point location in evaporator and condenser simultaneously and optimize the evaporator pressure for best performance with various heat source and sink conditions. Effects of pinch point temperature difference (PPTD), isentropic efficiency, subcooling, superheating and regenerator on the energy and economic performances are discussed for selected working fluids. System yields similar optimum design for both maximum power generation and minimum capital cost per unit power. At optimum condition, ammonia is best in terms of higher thermal efficiency and lower component size, R152a is best in terms of higher net power output and heat recovery efficiency (11.1%), and toluene is best in terms of lower capital cost and cost per unit power output (7060 $/kW). Effect of heat source and sink parameters on both energy and economic performances is significant. Contour plots are presented to select the best ORC design parameters for available heat source condition. PPTD and expander isentropic efficiency have significant effect on performances. However, the effect of subcooling, superheating and regenerator depends on working fluid.
|
Collections
Show full item record
contributor author | Sarkar, Jahar | |
date accessioned | 2019-02-28T10:56:09Z | |
date available | 2019-02-28T10:56:09Z | |
date copyright | 1/31/2018 12:00:00 AM | |
date issued | 2018 | |
identifier issn | 0195-0738 | |
identifier other | jert_140_05_052004.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4250956 | |
description abstract | A generalized methodology for pinch point design and optimization of subcritical and transcritical organic Rankine cycles (ORCs) using both wet and dry fluids is adopted in this study. The presented algorithm can predict the pinch point location in evaporator and condenser simultaneously and optimize the evaporator pressure for best performance with various heat source and sink conditions. Effects of pinch point temperature difference (PPTD), isentropic efficiency, subcooling, superheating and regenerator on the energy and economic performances are discussed for selected working fluids. System yields similar optimum design for both maximum power generation and minimum capital cost per unit power. At optimum condition, ammonia is best in terms of higher thermal efficiency and lower component size, R152a is best in terms of higher net power output and heat recovery efficiency (11.1%), and toluene is best in terms of lower capital cost and cost per unit power output (7060 $/kW). Effect of heat source and sink parameters on both energy and economic performances is significant. Contour plots are presented to select the best ORC design parameters for available heat source condition. PPTD and expander isentropic efficiency have significant effect on performances. However, the effect of subcooling, superheating and regenerator depends on working fluid. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle | |
type | Journal Paper | |
journal volume | 140 | |
journal issue | 5 | |
journal title | Journal of Energy Resources Technology | |
identifier doi | 10.1115/1.4038963 | |
journal fristpage | 52004 | |
journal lastpage | 052004-8 | |
tree | Journal of Energy Resources Technology:;2018:;volume 140:;issue 005 | |
contenttype | Fulltext |