YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Potential and Limitations of Dual Fuel Operation of High Speed Large Engines

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 003::page 32205
    Author:
    Redtenbacher, Christoph
    ,
    Kiesling, Constantin
    ,
    Malin, Maximilian
    ,
    Wimmer, Andreas
    ,
    Pastor, José V.
    ,
    Pinotti, Mattia
    DOI: 10.1115/1.4038464
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The aim of this paper is to identify and investigate the potential and limitations of diesel–gas combustion concepts for high speed large engines operated in gas mode with very small amounts of pilot fuel (<5% diesel fraction). Experimental tests were carried out on a flexible single cylinder research engine (displacement 6.24 dm3) equipped with a common rail system. Various engine configurations and operating parameters were varied and the effects on the combustion process were analyzed. The results presented in this paper include a comparison of the performance of the investigated dual fuel concept to those of a state-of-the-art monofuel gas engine and a state-of-the-art monofuel diesel engine. Evaluation reveals that certain limiting factors exist that prevent the dual fuel engine from performing as well as the superior gas engine. At the same NOx level of 1.3 g/kWh, the efficiency of the dual fuel engine is ≈3.5% pts. lower than that of the gas engine. This is caused by the weaker ignition performance of the injected pilot fuel compared to that of the gas scavenged prechamber of the gas engine. On the other hand, the dual fuel concept has the potential to compete with the diesel engine. The dual fuel engine can be operated at the efficiency level of the diesel engine yet with significantly lower NOx emissions (3.5 g/kWh and 6.3 g/kWh, respectively). Since the injection of pilot fuel is of major importance for flame initialization, and thus for the main combustion event of the dual fuel engine, optical investigations in a spray box, measurements of injection rates, and three-dimensional (3D) computational fluid dynamics (CFD) simulation were conducted to obtain even more detailed insight into these processes. A study on the influence of the diesel fraction shows that diminishing the diesel fraction from 3% to lower values has a significant impact on engine performance because of the effects of such a reduction on injection, ignition delay, and initial flame formation. The presented results illustrate which operating strategy is beneficial for engine performance in terms of low NOx emissions and high efficiency. Moreover, potential measures can be derived which allow for further optimization of the diesel–gas combustion process.
    • Download: (1.401Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Potential and Limitations of Dual Fuel Operation of High Speed Large Engines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250945
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorRedtenbacher, Christoph
    contributor authorKiesling, Constantin
    contributor authorMalin, Maximilian
    contributor authorWimmer, Andreas
    contributor authorPastor, José V.
    contributor authorPinotti, Mattia
    date accessioned2019-02-28T10:56:06Z
    date available2019-02-28T10:56:06Z
    date copyright11/30/2017 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_03_032205.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250945
    description abstractThe aim of this paper is to identify and investigate the potential and limitations of diesel–gas combustion concepts for high speed large engines operated in gas mode with very small amounts of pilot fuel (<5% diesel fraction). Experimental tests were carried out on a flexible single cylinder research engine (displacement 6.24 dm3) equipped with a common rail system. Various engine configurations and operating parameters were varied and the effects on the combustion process were analyzed. The results presented in this paper include a comparison of the performance of the investigated dual fuel concept to those of a state-of-the-art monofuel gas engine and a state-of-the-art monofuel diesel engine. Evaluation reveals that certain limiting factors exist that prevent the dual fuel engine from performing as well as the superior gas engine. At the same NOx level of 1.3 g/kWh, the efficiency of the dual fuel engine is ≈3.5% pts. lower than that of the gas engine. This is caused by the weaker ignition performance of the injected pilot fuel compared to that of the gas scavenged prechamber of the gas engine. On the other hand, the dual fuel concept has the potential to compete with the diesel engine. The dual fuel engine can be operated at the efficiency level of the diesel engine yet with significantly lower NOx emissions (3.5 g/kWh and 6.3 g/kWh, respectively). Since the injection of pilot fuel is of major importance for flame initialization, and thus for the main combustion event of the dual fuel engine, optical investigations in a spray box, measurements of injection rates, and three-dimensional (3D) computational fluid dynamics (CFD) simulation were conducted to obtain even more detailed insight into these processes. A study on the influence of the diesel fraction shows that diminishing the diesel fraction from 3% to lower values has a significant impact on engine performance because of the effects of such a reduction on injection, ignition delay, and initial flame formation. The presented results illustrate which operating strategy is beneficial for engine performance in terms of low NOx emissions and high efficiency. Moreover, potential measures can be derived which allow for further optimization of the diesel–gas combustion process.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePotential and Limitations of Dual Fuel Operation of High Speed Large Engines
    typeJournal Paper
    journal volume140
    journal issue3
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4038464
    journal fristpage32205
    journal lastpage032205-10
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian