YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 007::page 72903
    Author:
    Moussa, Tamer
    ,
    Elkatatny, Salaheldin
    ,
    Mahmoud, Mohamed
    ,
    Abdulraheem, Abdulazeez
    DOI: 10.1115/1.4039270
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Permeability is a key parameter related to any hydrocarbon reservoir characterization. Moreover, many petroleum engineering problems cannot be precisely answered without having accurate permeability value. Core analysis and well test techniques are the conventional methods to determine permeability. These methods are time-consuming and very expensive. Therefore, many researches have been introduced to identify the relationship between core permeability and well log data using artificial neural network (ANN). The objective of this research is to develop a new empirical correlation that can be used to determine the reservoir permeability of oil wells from well log data, namely, deep resistivity (RT), bulk density (RHOB), microspherical focused resistivity (RSFL), neutron porosity (NPHI), and gamma ray (GR). A self-adaptive differential evolution integrated with artificial neural network (SaDE-ANN) approach and evolutionary algorithm-based symbolic regression (EASR) techniques were used to develop the correlations based on 743 actual core permeability measurements and well log data. The obtained results showed that the developed correlations using SaDE-ANN models can be used to predict the reservoir permeability from well log data with a high accuracy (the mean square error (MSE) was 0.0638 and the correlation coefficient (CC) was 0.98). SaDE-ANN approach is more accurate than the EASR. The introduced technique and empirical correlations will assist the petroleum engineers to calculate the reservoir permeability as a function of the well log data. This is the first time to implement and apply SaDE-ANN approaches to estimate reservoir permeability from well log data (RSFL, RT, NPHI, RHOB, and GR). Therefore, it is a step forward to eliminate the required lab measurements for core permeability and discover the capabilities of optimization and artificial intelligence models as well as their application in permeability determination. Outcomes of this study could help petroleum engineers to have better understanding of reservoir performance when lab data are not available.
    • Download: (2.205Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250919
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorMoussa, Tamer
    contributor authorElkatatny, Salaheldin
    contributor authorMahmoud, Mohamed
    contributor authorAbdulraheem, Abdulazeez
    date accessioned2019-02-28T10:55:56Z
    date available2019-02-28T10:55:56Z
    date copyright3/15/2018 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_07_072903.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250919
    description abstractPermeability is a key parameter related to any hydrocarbon reservoir characterization. Moreover, many petroleum engineering problems cannot be precisely answered without having accurate permeability value. Core analysis and well test techniques are the conventional methods to determine permeability. These methods are time-consuming and very expensive. Therefore, many researches have been introduced to identify the relationship between core permeability and well log data using artificial neural network (ANN). The objective of this research is to develop a new empirical correlation that can be used to determine the reservoir permeability of oil wells from well log data, namely, deep resistivity (RT), bulk density (RHOB), microspherical focused resistivity (RSFL), neutron porosity (NPHI), and gamma ray (GR). A self-adaptive differential evolution integrated with artificial neural network (SaDE-ANN) approach and evolutionary algorithm-based symbolic regression (EASR) techniques were used to develop the correlations based on 743 actual core permeability measurements and well log data. The obtained results showed that the developed correlations using SaDE-ANN models can be used to predict the reservoir permeability from well log data with a high accuracy (the mean square error (MSE) was 0.0638 and the correlation coefficient (CC) was 0.98). SaDE-ANN approach is more accurate than the EASR. The introduced technique and empirical correlations will assist the petroleum engineers to calculate the reservoir permeability as a function of the well log data. This is the first time to implement and apply SaDE-ANN approaches to estimate reservoir permeability from well log data (RSFL, RT, NPHI, RHOB, and GR). Therefore, it is a step forward to eliminate the required lab measurements for core permeability and discover the capabilities of optimization and artificial intelligence models as well as their application in permeability determination. Outcomes of this study could help petroleum engineers to have better understanding of reservoir performance when lab data are not available.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches
    typeJournal Paper
    journal volume140
    journal issue7
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4039270
    journal fristpage72903
    journal lastpage072903-8
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian