YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Air Quality and Site Selection on Gas Turbine Engine Performance

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 002::page 20903
    Author:
    MacPhee, David W.
    ,
    Beyene, Asfaw
    DOI: 10.1115/1.4038118
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Air pollution can have detrimental effects on gas turbine performance leading to blade fouling, which reduces power output and requires frequent cleanings. This issue is a fairly well-known phenomenon in the power industry. However, site selection for gas turbine installation on the basis of air quality is rarely part of the decision-making process, mainly due to lack of geographical options especially in an urban environment or perhaps due to a simple assumption that air quality at a local micro-level has no impact on the performance of the engine. In this paper, we perform a computational fluid dynamics (CFD) study on an area surrounding a combined heat and power (CHP) facility to assess the impact of local wind distribution on air quality and the performance of a gas turbine engine. Several aerodynamic properties are suggested as possible indicators of air quality and/or high airborne particulate concentration. These indicators are then compared to data collected at various points in and around the site. The results suggest that through post-processing of a simplified CFD simulation analyzing the adjacent terrain, a continuous map of field variables can be obtained and help designers locate future CHP or gas turbine power plants in regions of lower particulate concentrations. This, in turn, would greatly increase efficiency and cost-effectiveness of the proposed power plant.
    • Download: (1.825Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Air Quality and Site Selection on Gas Turbine Engine Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250905
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorMacPhee, David W.
    contributor authorBeyene, Asfaw
    date accessioned2019-02-28T10:55:50Z
    date available2019-02-28T10:55:50Z
    date copyright10/17/2017 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_02_020903.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250905
    description abstractAir pollution can have detrimental effects on gas turbine performance leading to blade fouling, which reduces power output and requires frequent cleanings. This issue is a fairly well-known phenomenon in the power industry. However, site selection for gas turbine installation on the basis of air quality is rarely part of the decision-making process, mainly due to lack of geographical options especially in an urban environment or perhaps due to a simple assumption that air quality at a local micro-level has no impact on the performance of the engine. In this paper, we perform a computational fluid dynamics (CFD) study on an area surrounding a combined heat and power (CHP) facility to assess the impact of local wind distribution on air quality and the performance of a gas turbine engine. Several aerodynamic properties are suggested as possible indicators of air quality and/or high airborne particulate concentration. These indicators are then compared to data collected at various points in and around the site. The results suggest that through post-processing of a simplified CFD simulation analyzing the adjacent terrain, a continuous map of field variables can be obtained and help designers locate future CHP or gas turbine power plants in regions of lower particulate concentrations. This, in turn, would greatly increase efficiency and cost-effectiveness of the proposed power plant.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImpact of Air Quality and Site Selection on Gas Turbine Engine Performance
    typeJournal Paper
    journal volume140
    journal issue2
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4038118
    journal fristpage20903
    journal lastpage020903-7
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian