contributor author | Jin, Hui | |
contributor author | Chen, Bin | |
contributor author | Zhao, Xiao | |
contributor author | Cao, Changqing | |
date accessioned | 2019-02-28T10:55:41Z | |
date available | 2019-02-28T10:55:41Z | |
date copyright | 11/9/2017 12:00:00 AM | |
date issued | 2018 | |
identifier issn | 0195-0738 | |
identifier other | jert_140_04_041801.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4250874 | |
description abstract | Supercritical water gasification (SCWG) is an efficient and clean conversion of biomass due to the unique chemical and physical properties. Anthracene and furfural are the key intermediates in SCWG, and their microscopic reaction mechanism in supercritical water may provide information for reactor optimization and selection of optimal operating condition. Density functional theory (DFT) and reactive empirical force fields (ReaxFF) were combined to investigate the molecular dynamics of catalytic gasification of anthracene and furfural. The simulation results showed that Cu and Ni obviously increased the production of H radicals, therefore the substance SCWG process. Ni catalyst decreased the production of H2 with the residence time of 500 ps while significantly increased CO production and finally increased the syngas production. Ni catalyst was proved to decrease the free carbon production to prohibit the carbon deposition on the surface of active sites; meanwhile, Cu catalyst increased the production of free carbon. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Molecular Dynamic Simulation of Hydrogen Production by Catalytic Gasification of Key Intermediates of Biomass in Supercritical Water | |
type | Journal Paper | |
journal volume | 140 | |
journal issue | 4 | |
journal title | Journal of Energy Resources Technology | |
identifier doi | 10.1115/1.4037814 | |
journal fristpage | 41801 | |
journal lastpage | 041801-5 | |
tree | Journal of Energy Resources Technology:;2018:;volume 140:;issue 004 | |
contenttype | Fulltext | |