YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 009::page 92002
    Author:
    Islam, Shahid
    ,
    Dincer, Ibrahim
    DOI: 10.1115/1.4039873
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper deals with an integrated biomass system developed for syngas production with waste heat recovery option and analyzes this system thermodynamically using both energy and exergy approaches. Also, an aspenplus simulation model is developed to demonstrate comparative gasification analyses of wood (Birch) and olive waste using Gibbs reactor for syngas production. Gibbs free energy minimization technique is applied to calculate the equilibrium of chemical reactions. In this newly developed model, the heat of the product syngas and the waste heat from the flue gas are recovered through a unique integration of four heat exchangers to produce steam for the gasification process. The sensitivity analyses are performed to observe the variations in the concentration of the methane, carbon monoxide and carbon dioxide in syngas against various operating conditions. Furthermore, the performance of gasifier is indicated through cold gas energy efficiency (CGE) and cold gas exergy efficiency (CGEX). The overall energy and exergy analyses are also conducted, and the comparisons reveal that the biomass composed of olive waste yields high magnitude of overall and cold gas energy efficiencies, whereas wood (Birch) yields high magnitude of overall and cold gas exergy efficiencies. Moreover, the energy of the product syngas is recovered through an expander which enhances energy and exergy efficiencies of the overall system. The present results show that the CGE, CGEX, and overall energetic and exergetic efficiencies follow a decreasing trend with the increase in combustion temperature. The proposed system has superior and unique features as compared to conventional biomass gasification systems.
    • Download: (7.091Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250870
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorIslam, Shahid
    contributor authorDincer, Ibrahim
    date accessioned2019-02-28T10:55:40Z
    date available2019-02-28T10:55:40Z
    date copyright4/19/2018 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_09_092002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250870
    description abstractThis paper deals with an integrated biomass system developed for syngas production with waste heat recovery option and analyzes this system thermodynamically using both energy and exergy approaches. Also, an aspenplus simulation model is developed to demonstrate comparative gasification analyses of wood (Birch) and olive waste using Gibbs reactor for syngas production. Gibbs free energy minimization technique is applied to calculate the equilibrium of chemical reactions. In this newly developed model, the heat of the product syngas and the waste heat from the flue gas are recovered through a unique integration of four heat exchangers to produce steam for the gasification process. The sensitivity analyses are performed to observe the variations in the concentration of the methane, carbon monoxide and carbon dioxide in syngas against various operating conditions. Furthermore, the performance of gasifier is indicated through cold gas energy efficiency (CGE) and cold gas exergy efficiency (CGEX). The overall energy and exergy analyses are also conducted, and the comparisons reveal that the biomass composed of olive waste yields high magnitude of overall and cold gas energy efficiencies, whereas wood (Birch) yields high magnitude of overall and cold gas exergy efficiencies. Moreover, the energy of the product syngas is recovered through an expander which enhances energy and exergy efficiencies of the overall system. The present results show that the CGE, CGEX, and overall energetic and exergetic efficiencies follow a decreasing trend with the increase in combustion temperature. The proposed system has superior and unique features as compared to conventional biomass gasification systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery
    typeJournal Paper
    journal volume140
    journal issue9
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4039873
    journal fristpage92002
    journal lastpage092002-11
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian