YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Long-Term Performance of Pile-Supported Ballastless Track-Bed at Various Water Levels

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2018:;Volume ( 144 ):;issue: 006
    Author:
    Wang Han-Lin;Chen Ren-Peng;Qi Shuai;Cheng Wei;Cui Yu-Jun
    DOI: 10.1061/(ASCE)GT.1943-5606.0001890
    Publisher: American Society of Civil Engineers
    Abstract: In recent years, the constructions of pile-supported ballastless track-bed have been developed rapidly in China. It appears important to assess the accumulative settlement of this kind of track-bed after years of operation, especially under unfavorable conditions, such as the rising of water level. In this study, a full-scale physical model simulating the pile-supported ballastless track-bed was established. The soil arching effect was previously developed in this model by draining out water in the water bags among the pile caps. The effects of water level and loading cycle on the accumulative settlement of this model were investigated following four testing procedures: water level rising, cyclic loading at high water level, water level lowering, and cyclic loading at low water level. The results indicated that the total accumulative settlement of the track-bed increased rapidly in the beginning of loading and tended to stabilize as the loading cycle increased at high water level, whereas the value varied slightly when loading at low water level. The distribution of the accumulative settlement inside the subgrade at the end of loading with high water level and at the end of this test both presented parabolic shaped variation trends, with the peak point occurring above the water bag and lower values developing above the pile cap. At the high water level, a modified model was applied to estimate the accumulative settlement of the unsaturated zone above the water level (height of soil arch), and the fitting parameters in this model were precalibrated using the testing data. The estimated results revealed that the deformation of the unsaturated zone above the water level accounted for a minor portion of that of the whole tack-bed. By contrast, the zone below the water level is the dominant factor to influence the accumulative settlement of the whole track-bed. From a practical point of view, a well-performing drainage system should be set up to avoid the rising of water level.
    • Download: (832.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Long-Term Performance of Pile-Supported Ballastless Track-Bed at Various Water Levels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250738
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorWang Han-Lin;Chen Ren-Peng;Qi Shuai;Cheng Wei;Cui Yu-Jun
    date accessioned2019-02-26T07:59:40Z
    date available2019-02-26T07:59:40Z
    date issued2018
    identifier other%28ASCE%29GT.1943-5606.0001890.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250738
    description abstractIn recent years, the constructions of pile-supported ballastless track-bed have been developed rapidly in China. It appears important to assess the accumulative settlement of this kind of track-bed after years of operation, especially under unfavorable conditions, such as the rising of water level. In this study, a full-scale physical model simulating the pile-supported ballastless track-bed was established. The soil arching effect was previously developed in this model by draining out water in the water bags among the pile caps. The effects of water level and loading cycle on the accumulative settlement of this model were investigated following four testing procedures: water level rising, cyclic loading at high water level, water level lowering, and cyclic loading at low water level. The results indicated that the total accumulative settlement of the track-bed increased rapidly in the beginning of loading and tended to stabilize as the loading cycle increased at high water level, whereas the value varied slightly when loading at low water level. The distribution of the accumulative settlement inside the subgrade at the end of loading with high water level and at the end of this test both presented parabolic shaped variation trends, with the peak point occurring above the water bag and lower values developing above the pile cap. At the high water level, a modified model was applied to estimate the accumulative settlement of the unsaturated zone above the water level (height of soil arch), and the fitting parameters in this model were precalibrated using the testing data. The estimated results revealed that the deformation of the unsaturated zone above the water level accounted for a minor portion of that of the whole tack-bed. By contrast, the zone below the water level is the dominant factor to influence the accumulative settlement of the whole track-bed. From a practical point of view, a well-performing drainage system should be set up to avoid the rising of water level.
    publisherAmerican Society of Civil Engineers
    titleLong-Term Performance of Pile-Supported Ballastless Track-Bed at Various Water Levels
    typeJournal Paper
    journal volume144
    journal issue6
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0001890
    page4018035
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2018:;Volume ( 144 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian