YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laboratory Investigation into Biodegradation of Jute Drains with Implications for Field Behavior

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2018:;Volume ( 144 ):;issue: 006
    Author:
    Nguyen Thanh Trung;Indraratna Buddhima;Carter John
    DOI: 10.1061/(ASCE)GT.1943-5606.0001885
    Publisher: American Society of Civil Engineers
    Abstract: Naturally occurring materials such as jute and coir have some favorable engineering characteristics and also degrade over time, so they have increasingly been used in engineering applications in recent years. The efficient way that naturally prefabricated vertical drains made from those materials help accelerate soil consolidation has been shown in previous studies, but they also tend to decompose rapidly in adverse environments, where cellulose-degrading bacteria cause a serious deterioration of their favorable drainage properties. This study presents a laboratory investigation into the biodegradation of prefabricated vertical jute drains in saturated soft soils, where the tensile strength of jute and coir fibers and the discharge capacity of drains decrease in response to different environments. Micro-observation also shows a transformation of the jute fibers and destruction of the drain structure due to biodegradation. DNA extraction and sequencing techniques to determine the microbial properties of these decayed fibers indicate that bacteria such as species of the genera Clostridium and Bacillus can cause rapid decomposition of cellulose-based material (i.e., jute), whereas other organic matter–consuming microbes such as sulfate-reducing bacteria do not directly contribute to the biodegradation of jute. In response, an analytical approach that incorporates various forms of drain discharge capacity over time is proposed to predict soil consolidation. The results indicate there is considerable deviation in dissipating the excess pore pressure when the drain degrades in different ways.
    • Download: (2.709Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laboratory Investigation into Biodegradation of Jute Drains with Implications for Field Behavior

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4250735
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorNguyen Thanh Trung;Indraratna Buddhima;Carter John
    date accessioned2019-02-26T07:59:39Z
    date available2019-02-26T07:59:39Z
    date issued2018
    identifier other%28ASCE%29GT.1943-5606.0001885.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4250735
    description abstractNaturally occurring materials such as jute and coir have some favorable engineering characteristics and also degrade over time, so they have increasingly been used in engineering applications in recent years. The efficient way that naturally prefabricated vertical drains made from those materials help accelerate soil consolidation has been shown in previous studies, but they also tend to decompose rapidly in adverse environments, where cellulose-degrading bacteria cause a serious deterioration of their favorable drainage properties. This study presents a laboratory investigation into the biodegradation of prefabricated vertical jute drains in saturated soft soils, where the tensile strength of jute and coir fibers and the discharge capacity of drains decrease in response to different environments. Micro-observation also shows a transformation of the jute fibers and destruction of the drain structure due to biodegradation. DNA extraction and sequencing techniques to determine the microbial properties of these decayed fibers indicate that bacteria such as species of the genera Clostridium and Bacillus can cause rapid decomposition of cellulose-based material (i.e., jute), whereas other organic matter–consuming microbes such as sulfate-reducing bacteria do not directly contribute to the biodegradation of jute. In response, an analytical approach that incorporates various forms of drain discharge capacity over time is proposed to predict soil consolidation. The results indicate there is considerable deviation in dissipating the excess pore pressure when the drain degrades in different ways.
    publisherAmerican Society of Civil Engineers
    titleLaboratory Investigation into Biodegradation of Jute Drains with Implications for Field Behavior
    typeJournal Paper
    journal volume144
    journal issue6
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0001885
    page4018026
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2018:;Volume ( 144 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian