YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear Capacity Comparison of Four Different Composite Interfaces between FRP Plates and Concrete Substrate

    Source: Journal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 004
    Author:
    Pu Zhang
    ,
    Hong Zhu
    ,
    Gang Wu
    ,
    Shao-Ping Meng
    ,
    Zhi-Shen Wu
    DOI: 10.1061/(ASCE)CC.1943-5614.0000666
    Publisher: American Society of Civil Engineers
    Abstract: The mechanical performance of four types of interfaces between fiber-reinforced polymer (FRP) plate and concrete was compared by double-lap-shear test. The study found that the failure characteristics of the four interfaces are obviously distinct. Among them, the shear capacity load of the shear key combined with wet-bond (SK-WB) interface was the highest, followed by the dry-bond and the coarse-aggregate-coating (CAC) interfaces; the wet-bond interface had the lowest shear load bearing capacity. The type of the resin used for the wet-bond adhesive has a slight influence on the bond strength, whereas the type of the resin used for the shear key bonding has a much more significant effect on the shear capacity load of these interfaces. The thickness of the wet-bond epoxy resin layer also has a significant impact on the bond performance of the wet-bond interface. The shear key forms has less influence when the flexural stiffness of the shear keys itself is sufficient; the load capacity of the SK-WB interface is often dependent on the bonding area between the shear key and the concrete. The concept of bond zone was put out when creating interface model of the SK-WB interface. Finally, unified form formulas of the shear capacity and the interface fracture energy are provided for the different interfaces, and the values of them are estimated.
    • Download: (10.50Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear Capacity Comparison of Four Different Composite Interfaces between FRP Plates and Concrete Substrate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4245352
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorPu Zhang
    contributor authorHong Zhu
    contributor authorGang Wu
    contributor authorShao-Ping Meng
    contributor authorZhi-Shen Wu
    date accessioned2017-12-30T13:04:37Z
    date available2017-12-30T13:04:37Z
    date issued2016
    identifier other%28ASCE%29CC.1943-5614.0000666.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4245352
    description abstractThe mechanical performance of four types of interfaces between fiber-reinforced polymer (FRP) plate and concrete was compared by double-lap-shear test. The study found that the failure characteristics of the four interfaces are obviously distinct. Among them, the shear capacity load of the shear key combined with wet-bond (SK-WB) interface was the highest, followed by the dry-bond and the coarse-aggregate-coating (CAC) interfaces; the wet-bond interface had the lowest shear load bearing capacity. The type of the resin used for the wet-bond adhesive has a slight influence on the bond strength, whereas the type of the resin used for the shear key bonding has a much more significant effect on the shear capacity load of these interfaces. The thickness of the wet-bond epoxy resin layer also has a significant impact on the bond performance of the wet-bond interface. The shear key forms has less influence when the flexural stiffness of the shear keys itself is sufficient; the load capacity of the SK-WB interface is often dependent on the bonding area between the shear key and the concrete. The concept of bond zone was put out when creating interface model of the SK-WB interface. Finally, unified form formulas of the shear capacity and the interface fracture energy are provided for the different interfaces, and the values of them are estimated.
    publisherAmerican Society of Civil Engineers
    titleShear Capacity Comparison of Four Different Composite Interfaces between FRP Plates and Concrete Substrate
    typeJournal Paper
    journal volume20
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000666
    page04016006
    treeJournal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian