YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation of Geosynthetic-Reinforced Soil Bridge Abutments under Static Loading

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2016:;Volume ( 142 ):;issue: 005
    Author:
    Yewei Zheng
    ,
    Patrick J. Fox
    DOI: 10.1061/(ASCE)GT.1943-5606.0001452
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a numerical investigation of the performance of geosynthetic-reinforced soil (GRS) bridge abutments under static loading conditions. Simulations were conducted using a finite-difference program to model the Founders/Meadows GRS bridge abutment during construction and service. Simulated results are in good agreement with field measurements, including displacements, lateral and vertical earth pressures, and tensile strains and forces in reinforcement. The simulations also indicate that horizontal restraint from the bridge structure has a significant influence on abutment deflections. A parametric study was then conducted to investigate the performance of a single-span full bridge system with two GRS abutments, including effects of bridge contact friction coefficient, backfill soil relative compaction, backfill soil cohesion, reinforcement spacing, reinforcement length, reinforcement stiffness, and bridge load. Results indicate that backfill soil relative compaction, reinforcement spacing, and bridge load have the most significant influence on lateral facing displacements and bridge footing settlements for GRS abutments. Differential settlements between the bridge footing and approach roadway were small for all simulated conditions.
    • Download: (1.366Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation of Geosynthetic-Reinforced Soil Bridge Abutments under Static Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243340
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorYewei Zheng
    contributor authorPatrick J. Fox
    date accessioned2017-12-30T12:54:54Z
    date available2017-12-30T12:54:54Z
    date issued2016
    identifier other%28ASCE%29GT.1943-5606.0001452.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243340
    description abstractThis paper presents a numerical investigation of the performance of geosynthetic-reinforced soil (GRS) bridge abutments under static loading conditions. Simulations were conducted using a finite-difference program to model the Founders/Meadows GRS bridge abutment during construction and service. Simulated results are in good agreement with field measurements, including displacements, lateral and vertical earth pressures, and tensile strains and forces in reinforcement. The simulations also indicate that horizontal restraint from the bridge structure has a significant influence on abutment deflections. A parametric study was then conducted to investigate the performance of a single-span full bridge system with two GRS abutments, including effects of bridge contact friction coefficient, backfill soil relative compaction, backfill soil cohesion, reinforcement spacing, reinforcement length, reinforcement stiffness, and bridge load. Results indicate that backfill soil relative compaction, reinforcement spacing, and bridge load have the most significant influence on lateral facing displacements and bridge footing settlements for GRS abutments. Differential settlements between the bridge footing and approach roadway were small for all simulated conditions.
    publisherAmerican Society of Civil Engineers
    titleNumerical Investigation of Geosynthetic-Reinforced Soil Bridge Abutments under Static Loading
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0001452
    page04016004
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2016:;Volume ( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian