YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear Strain Demands in Elastomeric Bearings Subjected to Rotation

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 004
    Author:
    Niel C. Van Engelen
    ,
    Dimitrios Konstantinidis
    ,
    Michael J. Tait
    DOI: 10.1061/(ASCE)EM.1943-7889.0001194
    Publisher: American Society of Civil Engineers
    Abstract: In seismic base isolation applications, fiber reinforcement was initially proposed as a potential cost-saving alternative to conventional steel reinforcement in laminated bearings. Steel reinforcement is often assumed to be rigid, but the extensibility of the reinforcement serves as an additional design parameter that must be considered. Similar to the compressibility of the elastomer, the extensibility of the reinforcement has a pronounced effect on important design parameters such as the compression modulus, bending modulus, and shear strains that develop because of compression or rotation. Analytical solutions for the bending modulus developed based on the pressure solution are available for most common pad geometries and can be used to derive the maximum shear strain due to rotation. These solutions are often complex and unsuitable for design purposes. In this study, the analytical solutions for an infinite strip, circular, square, rectangular, and annular pad geometries are derived and simplified to form geometry-specific approximations for the maximum shear strain due to rotation. The simplified approximations account for the reinforcement extensibility and the compressibility of the elastomer. The derived approximations are evaluated based on the analytical solutions and provide accurate values over a wide range of shape factors and values of bulk compressibility and reinforcement extensibility.
    • Download: (1.124Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear Strain Demands in Elastomeric Bearings Subjected to Rotation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4243137
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorNiel C. Van Engelen
    contributor authorDimitrios Konstantinidis
    contributor authorMichael J. Tait
    date accessioned2017-12-30T12:54:05Z
    date available2017-12-30T12:54:05Z
    date issued2017
    identifier other%28ASCE%29EM.1943-7889.0001194.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243137
    description abstractIn seismic base isolation applications, fiber reinforcement was initially proposed as a potential cost-saving alternative to conventional steel reinforcement in laminated bearings. Steel reinforcement is often assumed to be rigid, but the extensibility of the reinforcement serves as an additional design parameter that must be considered. Similar to the compressibility of the elastomer, the extensibility of the reinforcement has a pronounced effect on important design parameters such as the compression modulus, bending modulus, and shear strains that develop because of compression or rotation. Analytical solutions for the bending modulus developed based on the pressure solution are available for most common pad geometries and can be used to derive the maximum shear strain due to rotation. These solutions are often complex and unsuitable for design purposes. In this study, the analytical solutions for an infinite strip, circular, square, rectangular, and annular pad geometries are derived and simplified to form geometry-specific approximations for the maximum shear strain due to rotation. The simplified approximations account for the reinforcement extensibility and the compressibility of the elastomer. The derived approximations are evaluated based on the analytical solutions and provide accurate values over a wide range of shape factors and values of bulk compressibility and reinforcement extensibility.
    publisherAmerican Society of Civil Engineers
    titleShear Strain Demands in Elastomeric Bearings Subjected to Rotation
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001194
    page04017005
    treeJournal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian