YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Applied Mechanics Reviews
    • View Item
    •   YE&T Library
    • ASME
    • Applied Mechanics Reviews
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Discussion of “Measuring and Understanding Contact Area at the Nanoscale: A Review” (Jacobs, T. D. B., and Ashlie Martini, A., 2017, ASME Appl. Mech. Rev., 69(6), p. 060802)

    Source: Applied Mechanics Reviews:;2017:;volume( 069 ):;issue: 006::page 65502
    Author:
    Ciavarella
    ,
    M.;Papangelo
    ,
    A.
    DOI: 10.1115/1.4038188
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Jacobs and Martini (JM) give a nice review of direct measurement methods (in situ electron microscopy), as well as indirect methods (which are based on contact resistance, contact stiffness, lateral forces, and topography) for measurement of the contact area, mostly at nanoscale. They also discuss simulation techniques and theories from single-contact continuum mechanics, to multicontact continuum mechanics and atomistic accounting. As they recognize, even at very small scales, “multiple-contacts” case occurs, and a returning problem is that the “real contact area” is often an ill-defined, “magnification” dependent quantity. The problem remains to introduce a truncation to the fractal roughness process, what was called in the 1970s “functional filtering.” The truncation can be “atomic roughness” or can be due to adhesion, or could be the resolution of the measuring instrument. Obviously, this also means that the strength (hardness) at the nanoscale is ill-defined. Of course, it is perfectly reasonable to fix the magnification and observe the dependence of contact area, and strength, on any other variable (speed, temperature, time, etc.).
    • Download: (82.89Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Discussion of “Measuring and Understanding Contact Area at the Nanoscale: A Review” (Jacobs, T. D. B., and Ashlie Martini, A., 2017, ASME Appl. Mech. Rev., 69(6), p. 060802)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242990
    Collections
    • Applied Mechanics Reviews

    Show full item record

    contributor authorCiavarella
    contributor authorM.;Papangelo
    contributor authorA.
    date accessioned2017-12-30T11:44:07Z
    date available2017-12-30T11:44:07Z
    date copyright11/2/2017 12:00:00 AM
    date issued2017
    identifier issn0003-6900
    identifier otheramr_069_06_065502.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242990
    description abstractJacobs and Martini (JM) give a nice review of direct measurement methods (in situ electron microscopy), as well as indirect methods (which are based on contact resistance, contact stiffness, lateral forces, and topography) for measurement of the contact area, mostly at nanoscale. They also discuss simulation techniques and theories from single-contact continuum mechanics, to multicontact continuum mechanics and atomistic accounting. As they recognize, even at very small scales, “multiple-contacts” case occurs, and a returning problem is that the “real contact area” is often an ill-defined, “magnification” dependent quantity. The problem remains to introduce a truncation to the fractal roughness process, what was called in the 1970s “functional filtering.” The truncation can be “atomic roughness” or can be due to adhesion, or could be the resolution of the measuring instrument. Obviously, this also means that the strength (hardness) at the nanoscale is ill-defined. Of course, it is perfectly reasonable to fix the magnification and observe the dependence of contact area, and strength, on any other variable (speed, temperature, time, etc.).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDiscussion of “Measuring and Understanding Contact Area at the Nanoscale: A Review” (Jacobs, T. D. B., and Ashlie Martini, A., 2017, ASME Appl. Mech. Rev., 69(6), p. 060802)
    typeJournal Paper
    journal volume69
    journal issue6
    journal titleApplied Mechanics Reviews
    identifier doi10.1115/1.4038188
    journal fristpage65502
    journal lastpage065502-3
    treeApplied Mechanics Reviews:;2017:;volume( 069 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian