YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interplay Between Dissipation and Modal Truncation in Ball-Beam Impact

    Source: Journal of Computational and Nonlinear Dynamics:;2017:;volume( 012 ):;issue: 006::page 61018
    Author:
    Bhattacharjee
    ,
    Arindam;Chatterjee
    ,
    Anindya
    DOI: 10.1115/1.4036830
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We study a ball-beam impact in detail; and in particular, we study the interplay between dissipation and modal truncation. With Hertzian contact between a solid ball and an Euler–Bernoulli beam model, we find using detailed numerical simulations that many (well above 60) modes are needed before convergence occurs; that contact dissipation (either viscous or hysteretic) has only a slight effect; and that contact location plays a significant role. However, and more interestingly, we find that as little as 2% modal damping speeds up convergence of the net interaction so that only about 25 modes are needed. We offer a qualitative explanation for this effect in terms of the many subimpacts that occur in the overall single macroscopic impact. In particular, we find that in cases where the overall interaction time is long enough to damp out high modes yet short enough to leave lower modes undissipated, modal truncation at about 25 modes gives good results. In contrast, if modal damping is absent so that higher mode vibrations persist throughout the interaction, final outcomes are less regular and many more modes are needed. The regime of impact interactions studied here occurs for reasonable parameter ranges, e.g., for a 3–4 cm steel ball dropped at speeds of 0.1–1.0 m/s on a meter-long steel beam of net mass 1 kg. We are unaware of any prior similarly detailed numerical study which clearly offers the one summarizing idea that we obtain here.
    • Download: (1.818Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interplay Between Dissipation and Modal Truncation in Ball-Beam Impact

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242967
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorBhattacharjee
    contributor authorArindam;Chatterjee
    contributor authorAnindya
    date accessioned2017-12-30T11:44:02Z
    date available2017-12-30T11:44:02Z
    date copyright9/7/2017 12:00:00 AM
    date issued2017
    identifier issn1555-1415
    identifier othercnd_012_06_061018.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242967
    description abstractWe study a ball-beam impact in detail; and in particular, we study the interplay between dissipation and modal truncation. With Hertzian contact between a solid ball and an Euler–Bernoulli beam model, we find using detailed numerical simulations that many (well above 60) modes are needed before convergence occurs; that contact dissipation (either viscous or hysteretic) has only a slight effect; and that contact location plays a significant role. However, and more interestingly, we find that as little as 2% modal damping speeds up convergence of the net interaction so that only about 25 modes are needed. We offer a qualitative explanation for this effect in terms of the many subimpacts that occur in the overall single macroscopic impact. In particular, we find that in cases where the overall interaction time is long enough to damp out high modes yet short enough to leave lower modes undissipated, modal truncation at about 25 modes gives good results. In contrast, if modal damping is absent so that higher mode vibrations persist throughout the interaction, final outcomes are less regular and many more modes are needed. The regime of impact interactions studied here occurs for reasonable parameter ranges, e.g., for a 3–4 cm steel ball dropped at speeds of 0.1–1.0 m/s on a meter-long steel beam of net mass 1 kg. We are unaware of any prior similarly detailed numerical study which clearly offers the one summarizing idea that we obtain here.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInterplay Between Dissipation and Modal Truncation in Ball-Beam Impact
    typeJournal Paper
    journal volume12
    journal issue6
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4036830
    journal fristpage61018
    journal lastpage061018-8
    treeJournal of Computational and Nonlinear Dynamics:;2017:;volume( 012 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian