YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Linear Regression Framework for the Verification of Bayesian Model Calibration Algorithms

    Source: Journal of Verification, Validation and Uncertainty Quantification:;2017:;volume( 002 ):;issue: 002::page 21006
    Author:
    McMahan
    ,
    Jr.
    ,
    Jerry A.;Williams
    ,
    Brian J.;Smith
    ,
    Ralph C.;Malaya
    ,
    Nicholas
    DOI: 10.1115/1.4037705
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We describe a framework for the verification of Bayesian model calibration routines. The framework is based on linear regression and can be configured to verify calibration to data with a range of observation error characteristics. The framework is designed for efficient implementation and is suitable for verifying code intended for large-scale problems. We propose an approach for using the framework to verify Markov chain Monte Carlo (MCMC) software by combining it with a nonparametric test for distribution equality based on the energy statistic. Our matlab-based reference implementation of the framework is shown to correctly distinguish between output obtained from correctly and incorrectly implemented MCMC routines. Since correctness of output from an MCMC software depends on choosing settings appropriate for the problem-of-interest, our framework can potentially be used for verifying such settings.
    • Download: (1.027Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Linear Regression Framework for the Verification of Bayesian Model Calibration Algorithms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242916
    Collections
    • Journal of Verification, Validation and Uncertainty Quantification

    Show full item record

    contributor authorMcMahan
    contributor authorJr.
    contributor authorJerry A.;Williams
    contributor authorBrian J.;Smith
    contributor authorRalph C.;Malaya
    contributor authorNicholas
    date accessioned2017-12-30T11:43:50Z
    date available2017-12-30T11:43:50Z
    date copyright9/12/2017 12:00:00 AM
    date issued2017
    identifier issn2377-2158
    identifier othervvuq_002_02_021006.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242916
    description abstractWe describe a framework for the verification of Bayesian model calibration routines. The framework is based on linear regression and can be configured to verify calibration to data with a range of observation error characteristics. The framework is designed for efficient implementation and is suitable for verifying code intended for large-scale problems. We propose an approach for using the framework to verify Markov chain Monte Carlo (MCMC) software by combining it with a nonparametric test for distribution equality based on the energy statistic. Our matlab-based reference implementation of the framework is shown to correctly distinguish between output obtained from correctly and incorrectly implemented MCMC routines. Since correctness of output from an MCMC software depends on choosing settings appropriate for the problem-of-interest, our framework can potentially be used for verifying such settings.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Linear Regression Framework for the Verification of Bayesian Model Calibration Algorithms
    typeJournal Paper
    journal volume2
    journal issue2
    journal titleJournal of Verification, Validation and Uncertainty Quantification
    identifier doi10.1115/1.4037705
    journal fristpage21006
    journal lastpage021006-14
    treeJournal of Verification, Validation and Uncertainty Quantification:;2017:;volume( 002 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian