Show simple item record

contributor authorWang
contributor authorJ. H.;Chen
contributor authorC. Q.
date accessioned2017-12-30T11:43:46Z
date available2017-12-30T11:43:46Z
date copyright10/16/2017 12:00:00 AM
date issued2017
identifier issn0021-8936
identifier otherjam_084_12_121004.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242896
description abstractPiezoresponse force microscopy (PFM) extends the conventional nano-indentation technique and has become one of the most widely used methods to determine the properties of small scale piezoelectric materials. Its accuracy depends largely on whether a reliable analytical model for the corresponding properties is available. Based on the coupled theory and the image charge model, a rigorous analysis of the film thickness effects on the electromechanical behaviors of PFM for piezoelectric films is presented. When the film is very thick, analytical solutions for the surface displacement, electric potential, image charge, image charge distance, and effective piezoelectric coefficient are obtained. For the infinitely thin (IT) film case, the corresponding closed-form solutions are derived. When the film is of finite thickness, a single parameter semi-empirical formula agreeing well with the numerical results is proposed for the effective piezoelectric coefficient. It is found that if the film thickness effect is not taken into account, PFM can significantly underestimate the effective piezoelectric coefficient compared to the half space result. The effects of the ambient dielectric property on PFM responses are also explored. Humidity reduces the surface displacement, broadens the radial distribution peak, and greatly enlarges the image charge, resulting in reduced effective piezoelectric coefficient. The proposed semi-empirical formula is also suitable to describe the thickness effects on the effective piezoelectric coefficient of thin films in humid environment. The obtained results can be used to quantitatively interpret the PFM signals and enable the determination of intrinsic piezoelectric coefficient through PFM measurement for thin films.
publisherThe American Society of Mechanical Engineers (ASME)
titleEffects of Thickness on the Responses of Piezoresponse Force Microscopy for Piezoelectric Film/Substrate Systems
typeJournal Paper
journal volume84
journal issue12
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.4038064
journal fristpage121004
journal lastpage121004-11
treeJournal of Applied Mechanics:;2017:;volume( 084 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record