YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Evaluation of Vertical Cutoff Walls Comprising Zeolite-Amended Backfills for Enhanced Metals Containment

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2017:;Volume ( 143 ):;issue: 007
    Author:
    Catherine S. Hong
    ,
    Charles D. Shackelford
    ,
    Michael A. Malusis
    DOI: 10.1061/(ASCE)GT.1943-5606.0001699
    Publisher: American Society of Civil Engineers
    Abstract: The potential for enhanced containment of two metals, potassium (K) and zinc (Zn), by soil-bentonite (SB) vertical cutoff walls comprising zeolite-amended backfills was evaluated on the basis of numerical transport simulations and previously measured adsorption data that exhibited nonlinear behavior over the range of concentrations of interest. The results indicate that the containment duration as reflected by the barrier flux breakthrough time increased for K with decreasing source concentration (Co), increasing content of zeolite amendment, and increasing adsorption capacity of the backfill. The results for Zn are similar to those for K except at lower Co (i.e., 100 and 1,000  mg/L), where better performance occurred with the unamended backfill relative to that for the zeolite-amended backfills. This ostensibly counterintuitive result for Zn was attributed to the geochemical conditions existing in the adsorption tests, whereby adsorption of Zn was suppressed due to unfavorable competition with elevated concentrations of redissolved metals, primarily Na+, resulting from the zeolite amendment. Overall, the results of the study indicate that containment of metals may be enhanced from years to a century or more with zeolite-amended SB cutoff walls, but the magnitude of any enhanced containment is dependent on both the adsorption capacity and the adsorption behavior of the specific metal with the specific backfill.
    • Download: (1.160Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Evaluation of Vertical Cutoff Walls Comprising Zeolite-Amended Backfills for Enhanced Metals Containment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4239553
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorCatherine S. Hong
    contributor authorCharles D. Shackelford
    contributor authorMichael A. Malusis
    date accessioned2017-12-16T09:10:35Z
    date available2017-12-16T09:10:35Z
    date issued2017
    identifier other%28ASCE%29GT.1943-5606.0001699.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4239553
    description abstractThe potential for enhanced containment of two metals, potassium (K) and zinc (Zn), by soil-bentonite (SB) vertical cutoff walls comprising zeolite-amended backfills was evaluated on the basis of numerical transport simulations and previously measured adsorption data that exhibited nonlinear behavior over the range of concentrations of interest. The results indicate that the containment duration as reflected by the barrier flux breakthrough time increased for K with decreasing source concentration (Co), increasing content of zeolite amendment, and increasing adsorption capacity of the backfill. The results for Zn are similar to those for K except at lower Co (i.e., 100 and 1,000  mg/L), where better performance occurred with the unamended backfill relative to that for the zeolite-amended backfills. This ostensibly counterintuitive result for Zn was attributed to the geochemical conditions existing in the adsorption tests, whereby adsorption of Zn was suppressed due to unfavorable competition with elevated concentrations of redissolved metals, primarily Na+, resulting from the zeolite amendment. Overall, the results of the study indicate that containment of metals may be enhanced from years to a century or more with zeolite-amended SB cutoff walls, but the magnitude of any enhanced containment is dependent on both the adsorption capacity and the adsorption behavior of the specific metal with the specific backfill.
    publisherAmerican Society of Civil Engineers
    titleNumerical Evaluation of Vertical Cutoff Walls Comprising Zeolite-Amended Backfills for Enhanced Metals Containment
    typeJournal Paper
    journal volume143
    journal issue7
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0001699
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2017:;Volume ( 143 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian