YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stiffness of Soil-Geosynthetic Composite under Small Displacements. II: Experimental Evaluation

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2017:;Volume ( 143 ):;issue: 010
    Author:
    Gholam H. Roodi
    ,
    Jorge G. Zornberg
    DOI: 10.1061/(ASCE)GT.1943-5606.0001769
    Publisher: American Society of Civil Engineers
    Abstract: While most soil–geosynthetic interaction models have focused on the characterization of failure conditions, little emphasis has been placed on models and parameters suitable for characterizing the stiffness of soil–geosynthetic systems. In the companion paper, a soil–geosynthetic interaction parameter (KSGC) was developed that captures the stiffness of a soil–geosynthetic composite under small displacements. This included validation of the suitability of the assumptions and outcomes of the model for a specific set of materials and testing conditions. This paper presents the results of a comprehensive experimental program that allows the suitability of the model to be generalized for a wider range of materials and testing conditions. An initial test series was conducted using large-scale soil–geosynthetic interaction test equipment to evaluate the repeatability of the experimental results. A comparison of the test results from this series, as well as an assessment of an extensive database on the expected variability of soil and geosynthetic properties, revealed that the coefficient of variation of the model parameters was acceptable and well within the typical range of similar geotechnical and geosynthetic properties. Results from additional test series confirmed the linearity and uniqueness of the relationship between the geosynthetic unit tension squared and corresponding displacements, which are the key features of the proposed model. These tests were conducted under various conditions using different geosynthetic and backfill materials. Results also showed that the constitutive relationships adopted in the model were adequate for the extended range of confining pressures, geosynthetic lengths, geosynthetic types, and backfill soil types adopted in the study. The consistency of the results obtained in the experimental testing program underscores the suitability of the proposed KSGC parameter as a basis for the evaluation of soil–geosynthetic interactions under small displacements.
    • Download: (2.526Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stiffness of Soil-Geosynthetic Composite under Small Displacements. II: Experimental Evaluation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4239481
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorGholam H. Roodi
    contributor authorJorge G. Zornberg
    date accessioned2017-12-16T09:10:18Z
    date available2017-12-16T09:10:18Z
    date issued2017
    identifier other%28ASCE%29GT.1943-5606.0001769.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4239481
    description abstractWhile most soil–geosynthetic interaction models have focused on the characterization of failure conditions, little emphasis has been placed on models and parameters suitable for characterizing the stiffness of soil–geosynthetic systems. In the companion paper, a soil–geosynthetic interaction parameter (KSGC) was developed that captures the stiffness of a soil–geosynthetic composite under small displacements. This included validation of the suitability of the assumptions and outcomes of the model for a specific set of materials and testing conditions. This paper presents the results of a comprehensive experimental program that allows the suitability of the model to be generalized for a wider range of materials and testing conditions. An initial test series was conducted using large-scale soil–geosynthetic interaction test equipment to evaluate the repeatability of the experimental results. A comparison of the test results from this series, as well as an assessment of an extensive database on the expected variability of soil and geosynthetic properties, revealed that the coefficient of variation of the model parameters was acceptable and well within the typical range of similar geotechnical and geosynthetic properties. Results from additional test series confirmed the linearity and uniqueness of the relationship between the geosynthetic unit tension squared and corresponding displacements, which are the key features of the proposed model. These tests were conducted under various conditions using different geosynthetic and backfill materials. Results also showed that the constitutive relationships adopted in the model were adequate for the extended range of confining pressures, geosynthetic lengths, geosynthetic types, and backfill soil types adopted in the study. The consistency of the results obtained in the experimental testing program underscores the suitability of the proposed KSGC parameter as a basis for the evaluation of soil–geosynthetic interactions under small displacements.
    publisherAmerican Society of Civil Engineers
    titleStiffness of Soil-Geosynthetic Composite under Small Displacements. II: Experimental Evaluation
    typeJournal Paper
    journal volume143
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0001769
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2017:;Volume ( 143 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian