YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of Operation Stability of a Spark Ignition Engine Fueled With Coal Bed Gas

    Source: Journal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 004::page 44501
    Author:
    Chen, Lei
    ,
    Song, Peng
    ,
    Long, Wuqiang
    ,
    Feng, Liyan
    ,
    Zhang, Jing
    ,
    Wang, Yang
    DOI: 10.1115/1.4035427
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Experimental research has been carried out on a single cylinder naturally aspirated spark ignition engine which was modified to operate with coal-bed gas fuel to investigate the method of improving operation stability and lean burn limit. Varied fuel composition with methane concentration 30–100% and CO2 volumetric fraction 0–0.7 was employed to simulate coal-bed methane (CBM) and coal mined methane (CMM), respectively. Hydrogen was then employed to improve operational stability and lean burn limit. The results show that a stable operation range of the engine was obtained under most of the fuel compositions even if up to CO2 volumetric fraction = 0.6 was employed. Besides lean burn limit, the unstable operation with COVIMEP > 10% only appears at lean burn limit as well as CO2 volumetric fraction = 0.7 at each equivalence ratio. The lean burn limit of coal-bed gas has been significantly enlarged from the equivalence ratio equals to 0.6–0.4 by hydrogen addition. Stable operation with COVIMEP < 5% at the equivalence ratio equals to 0.4 has also been obtained at some high hydrogen concentration conditions. Hydrogen addition induced the reduction of both carbon monoxide (CO) and total hydrocarbon (THC) emissions at all equivalence ratio conditions, especially at the equivalence ratio equals to 0.4 and 0.6. CO2 addition improves NOx emission significantly; however, high CO2 volumetric fraction will lead to unstable operation, which results in deteriorated CO and THC emissions. Hydrogen addition has benefits of improving operation stability and enlarging lean burn limit of coal-bed gas engine, which has practical significance to improve the application of coal-bed gas engine technology.
    • Download: (1.198Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of Operation Stability of a Spark Ignition Engine Fueled With Coal Bed Gas

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236972
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorChen, Lei
    contributor authorSong, Peng
    contributor authorLong, Wuqiang
    contributor authorFeng, Liyan
    contributor authorZhang, Jing
    contributor authorWang, Yang
    date accessioned2017-11-25T07:21:14Z
    date available2017-11-25T07:21:14Z
    date copyright2017/17/4
    date issued2017
    identifier issn0195-0738
    identifier otherjert_139_04_044501.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236972
    description abstractExperimental research has been carried out on a single cylinder naturally aspirated spark ignition engine which was modified to operate with coal-bed gas fuel to investigate the method of improving operation stability and lean burn limit. Varied fuel composition with methane concentration 30–100% and CO2 volumetric fraction 0–0.7 was employed to simulate coal-bed methane (CBM) and coal mined methane (CMM), respectively. Hydrogen was then employed to improve operational stability and lean burn limit. The results show that a stable operation range of the engine was obtained under most of the fuel compositions even if up to CO2 volumetric fraction = 0.6 was employed. Besides lean burn limit, the unstable operation with COVIMEP > 10% only appears at lean burn limit as well as CO2 volumetric fraction = 0.7 at each equivalence ratio. The lean burn limit of coal-bed gas has been significantly enlarged from the equivalence ratio equals to 0.6–0.4 by hydrogen addition. Stable operation with COVIMEP < 5% at the equivalence ratio equals to 0.4 has also been obtained at some high hydrogen concentration conditions. Hydrogen addition induced the reduction of both carbon monoxide (CO) and total hydrocarbon (THC) emissions at all equivalence ratio conditions, especially at the equivalence ratio equals to 0.4 and 0.6. CO2 addition improves NOx emission significantly; however, high CO2 volumetric fraction will lead to unstable operation, which results in deteriorated CO and THC emissions. Hydrogen addition has benefits of improving operation stability and enlarging lean burn limit of coal-bed gas engine, which has practical significance to improve the application of coal-bed gas engine technology.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Study of Operation Stability of a Spark Ignition Engine Fueled With Coal Bed Gas
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4035427
    journal fristpage44501
    journal lastpage044501-5
    treeJournal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian