YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Regeneration of Initial Ensembles With Facies Analysis for Efficient History Matching

    Source: Journal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 004::page 42903
    Author:
    Kang, Byeongcheol
    ,
    Choe, Jonggeun
    DOI: 10.1115/1.4036382
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Reservoir characterization is needed for estimating reservoir properties and forecasting production rates in a reliable manner. However, it is challenging to figure out reservoir properties of interest due to limited information. Therefore, well-designed reservoir models, which reflect characteristics of a true field, should be selected and fine-tuned. We propose a novel scheme of generating initial reservoir models by using static data and production history data available. We select representative reservoir models by projecting reservoir models onto a two-dimensional (2D) plane using principal component analysis (PCA) and calculating errors of production rates against observed data. These selected models, which will have similar geological properties with the reference, are used to regenerate models by perturbing along the boundary of the different facies. These regenerated models have all the different facies distributions but share principal characteristics based on the selected models. We compare cases using 400 ensemble members, 100 models with unbiased uniform sampling, and 100 regenerated models by the proposed method. We analyze two synthetic reservoirs with different permeability distributions: one is a typical heterogeneous reservoir and the other is a channel reservoir with a bimodal permeability distribution. Compared to the cases using all the 400 models with ensemble Kalman filter (EnKF), the simulation time is dramatically reduced to 4.7%, while the prediction quality on oil and water productions is improved. Even in the more complex reservoir case, the proposed method shows great improvements with reduced uncertainties against the other cases.
    • Download: (3.636Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Regeneration of Initial Ensembles With Facies Analysis for Efficient History Matching

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236970
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorKang, Byeongcheol
    contributor authorChoe, Jonggeun
    date accessioned2017-11-25T07:21:14Z
    date available2017-11-25T07:21:14Z
    date copyright2017/17/4
    date issued2017
    identifier issn0195-0738
    identifier otherjert_139_04_042903.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236970
    description abstractReservoir characterization is needed for estimating reservoir properties and forecasting production rates in a reliable manner. However, it is challenging to figure out reservoir properties of interest due to limited information. Therefore, well-designed reservoir models, which reflect characteristics of a true field, should be selected and fine-tuned. We propose a novel scheme of generating initial reservoir models by using static data and production history data available. We select representative reservoir models by projecting reservoir models onto a two-dimensional (2D) plane using principal component analysis (PCA) and calculating errors of production rates against observed data. These selected models, which will have similar geological properties with the reference, are used to regenerate models by perturbing along the boundary of the different facies. These regenerated models have all the different facies distributions but share principal characteristics based on the selected models. We compare cases using 400 ensemble members, 100 models with unbiased uniform sampling, and 100 regenerated models by the proposed method. We analyze two synthetic reservoirs with different permeability distributions: one is a typical heterogeneous reservoir and the other is a channel reservoir with a bimodal permeability distribution. Compared to the cases using all the 400 models with ensemble Kalman filter (EnKF), the simulation time is dramatically reduced to 4.7%, while the prediction quality on oil and water productions is improved. Even in the more complex reservoir case, the proposed method shows great improvements with reduced uncertainties against the other cases.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRegeneration of Initial Ensembles With Facies Analysis for Efficient History Matching
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4036382
    journal fristpage42903
    journal lastpage042903-11
    treeJournal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian