YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficacy of Add-On Hydrous Ethanol Dual Fuel Systems to Reduce NOx Emissions From Diesel Engines

    Source: Journal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 004::page 42206
    Author:
    Hwang, Jeffrey T.
    ,
    Nord, Alex J.
    ,
    Northrop, William F.
    DOI: 10.1115/1.4036252
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Aftermarket dual-fuel injection systems using a variety of different fumigants have been proposed as alternatives to expensive after-treatment to control NOx emissions from legacy diesel engines. However, our previous work has shown that available add-on systems using hydrous ethanol as the fumigant achieve only minor benefits in emissions without recalibration of the diesel fuel injection strategy. This study experimentally re-evaluates a novel aftermarket dual-fuel port fuel injection (PFI) system used in our previous work, with the addition of higher flow injectors to increase the fumigant energy fraction (FEF), defined as the ratio of energy provided by the hydrous ethanol on a lower heating value (LHV) basis to overall fuel energy. Results of this study confirm our earlier findings that as FEF increases, NO emissions decrease, while NO2 and unburned ethanol emissions increase, leading to no change in overall NOx. Peak cylinder pressure and apparent rates of heat release are not strongly dependent on FEF, indicating that in-cylinder NO formation rates by the Zel'dovich mechanism remain the same. Through single zone modeling, we show the feasibility of in-cylinder NO conversion to NO2 aided by unburned ethanol. The modeling results indicate that NO to NO2 conversion occurs during the early expansion stroke where bulk gases have temperature in the range of 1150–1250 K. This work conclusively proves that aftermarket dual fuel systems for fixed calibration diesel engines cannot reduce NOx emissions without lowering peak temperature during diffusive combustion responsible for forming NO in the first place.
    • Download: (1.677Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficacy of Add-On Hydrous Ethanol Dual Fuel Systems to Reduce NOx Emissions From Diesel Engines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236960
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorHwang, Jeffrey T.
    contributor authorNord, Alex J.
    contributor authorNorthrop, William F.
    date accessioned2017-11-25T07:21:13Z
    date available2017-11-25T07:21:13Z
    date copyright2017/30/3
    date issued2017
    identifier issn0195-0738
    identifier otherjert_139_04_042206.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236960
    description abstractAftermarket dual-fuel injection systems using a variety of different fumigants have been proposed as alternatives to expensive after-treatment to control NOx emissions from legacy diesel engines. However, our previous work has shown that available add-on systems using hydrous ethanol as the fumigant achieve only minor benefits in emissions without recalibration of the diesel fuel injection strategy. This study experimentally re-evaluates a novel aftermarket dual-fuel port fuel injection (PFI) system used in our previous work, with the addition of higher flow injectors to increase the fumigant energy fraction (FEF), defined as the ratio of energy provided by the hydrous ethanol on a lower heating value (LHV) basis to overall fuel energy. Results of this study confirm our earlier findings that as FEF increases, NO emissions decrease, while NO2 and unburned ethanol emissions increase, leading to no change in overall NOx. Peak cylinder pressure and apparent rates of heat release are not strongly dependent on FEF, indicating that in-cylinder NO formation rates by the Zel'dovich mechanism remain the same. Through single zone modeling, we show the feasibility of in-cylinder NO conversion to NO2 aided by unburned ethanol. The modeling results indicate that NO to NO2 conversion occurs during the early expansion stroke where bulk gases have temperature in the range of 1150–1250 K. This work conclusively proves that aftermarket dual fuel systems for fixed calibration diesel engines cannot reduce NOx emissions without lowering peak temperature during diffusive combustion responsible for forming NO in the first place.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEfficacy of Add-On Hydrous Ethanol Dual Fuel Systems to Reduce NOx Emissions From Diesel Engines
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4036252
    journal fristpage42206
    journal lastpage042206-9
    treeJournal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian