YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Practical Data Mining and Artificial Neural Network Modeling for Steam-Assisted Gravity Drainage Production Analysis

    Source: Journal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 003::page 32909
    Author:
    Ma, Zhiwei
    ,
    Leung, Juliana Y.
    ,
    Zanon, Stefan
    DOI: 10.1115/1.4035751
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Production forecast of steam-assisted gravity drainage (SAGD) in heterogeneous reservoir is important for reservoir management and optimization of development strategies for oil sand operations. In this work, artificial intelligence (AI) approaches are employed as a complementary tool for production forecast and pattern recognition of highly nonlinear relationships between system variables. Field data from more than 2000 wells are extracted from various publicly available sources. It consists of petrophysical log measurements, production and injection profiles. Analysis of a raw dataset of this magnitude for SAGD reservoirs has not been published in the literature, although a previous study presented a much smaller dataset. This paper attempts to discuss and address a number of the challenges encountered. After a detailed exploratory data analysis, a refined dataset encompassing ten different SAGD operating fields with 153 complete well pairs is assembled for prediction model construction. Artificial neural network (ANN) is employed to facilitate the production performance analysis by calibrating the reservoir heterogeneities and operating constraints with production performance. The impact of extrapolation of the petrophysical parameters from the nearby vertical well is assessed. As a result, an additional input attribute is introduced to capture the uncertainty in extrapolation, while a new output attribute is incorporated as a quantitative measure of the process efficiency. Data-mining algorithms including principal components analysis (PCA) and cluster analysis are applied to improve prediction quality and model robustness by removing data correlation and by identifying internal structures among the dataset, which are novel extensions to the previous SAGD analysis study. Finally, statistical analysis is conducted to study the uncertainties in the final ANN predictions. The modeling results are demonstrated to be both reliable and acceptable. This paper demonstrates the combination of AI-based approaches and data-mining analysis can facilitate practical field data analysis, which is often prone to uncertainties, errors, biases, and noises, with high reliability and feasibility. Considering that many important system variables are typically unavailable in the public domain and, hence, are missing in the dataset, this work illustrates how practical AI approaches can be tailored to construct models capable of predicting SAGD recovery performance from only log-derived and operational variables. It also demonstrates the potential of AI models in assisting conventional SAGD analysis.
    • Download: (3.854Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Practical Data Mining and Artificial Neural Network Modeling for Steam-Assisted Gravity Drainage Production Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236942
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorMa, Zhiwei
    contributor authorLeung, Juliana Y.
    contributor authorZanon, Stefan
    date accessioned2017-11-25T07:21:11Z
    date available2017-11-25T07:21:11Z
    date copyright2017/8/2
    date issued2017
    identifier issn0195-0738
    identifier otherjert_139_03_032909.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236942
    description abstractProduction forecast of steam-assisted gravity drainage (SAGD) in heterogeneous reservoir is important for reservoir management and optimization of development strategies for oil sand operations. In this work, artificial intelligence (AI) approaches are employed as a complementary tool for production forecast and pattern recognition of highly nonlinear relationships between system variables. Field data from more than 2000 wells are extracted from various publicly available sources. It consists of petrophysical log measurements, production and injection profiles. Analysis of a raw dataset of this magnitude for SAGD reservoirs has not been published in the literature, although a previous study presented a much smaller dataset. This paper attempts to discuss and address a number of the challenges encountered. After a detailed exploratory data analysis, a refined dataset encompassing ten different SAGD operating fields with 153 complete well pairs is assembled for prediction model construction. Artificial neural network (ANN) is employed to facilitate the production performance analysis by calibrating the reservoir heterogeneities and operating constraints with production performance. The impact of extrapolation of the petrophysical parameters from the nearby vertical well is assessed. As a result, an additional input attribute is introduced to capture the uncertainty in extrapolation, while a new output attribute is incorporated as a quantitative measure of the process efficiency. Data-mining algorithms including principal components analysis (PCA) and cluster analysis are applied to improve prediction quality and model robustness by removing data correlation and by identifying internal structures among the dataset, which are novel extensions to the previous SAGD analysis study. Finally, statistical analysis is conducted to study the uncertainties in the final ANN predictions. The modeling results are demonstrated to be both reliable and acceptable. This paper demonstrates the combination of AI-based approaches and data-mining analysis can facilitate practical field data analysis, which is often prone to uncertainties, errors, biases, and noises, with high reliability and feasibility. Considering that many important system variables are typically unavailable in the public domain and, hence, are missing in the dataset, this work illustrates how practical AI approaches can be tailored to construct models capable of predicting SAGD recovery performance from only log-derived and operational variables. It also demonstrates the potential of AI models in assisting conventional SAGD analysis.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePractical Data Mining and Artificial Neural Network Modeling for Steam-Assisted Gravity Drainage Production Analysis
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4035751
    journal fristpage32909
    journal lastpage032909-10
    treeJournal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian