YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Efficient Workflow for Production Allocation During Water Flooding

    Source: Journal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 003::page 32902
    Author:
    Azamipour, Vahid
    ,
    Assareh, Mehdi
    ,
    Dehghani, Mohammad Reza
    ,
    Mittermeir, Georg M.
    DOI: 10.1115/1.4034808
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents an efficient production optimization scheme for an oil reservoir undergoing water injection by optimizing the production rate for each well. In this approach, an adaptive version of simulated annealing (ASA) is used in two steps. The optimization variables updating in the first stage is associated with a coarse grid model. In the second step, the fine grid model is used to provide more details in final solution search. The proposed method is formulated as a constrained optimization problem defining a desired objective function and a set of existing field/facility constraints. The use of polytope in the ASA ensures the best solution in each iteration. The objective function is based on net present value (NPV). The initial oil production rates for each well come from capacity and property of each well. The coarse grid block model is generated based on average horizon permeability. The proposed optimization workflow was implemented for a field sector model. The results showed that the improved rates optimize the total oil production. The optimization of oil production rates and total water injection rate leads to increase in the total oil production from 315.616 MSm3 (our initial guess) to 440.184 MSm3, and the recovery factor is increased to 26.37%; however, the initial rates are much higher than the optimized rates. Beside this, the recovery factor of optimized production schedule with optimized total injection rate is 3.26% larger than the initial production schedule with optimized total water injection rate.
    • Download: (1.478Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Efficient Workflow for Production Allocation During Water Flooding

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236934
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorAzamipour, Vahid
    contributor authorAssareh, Mehdi
    contributor authorDehghani, Mohammad Reza
    contributor authorMittermeir, Georg M.
    date accessioned2017-11-25T07:21:11Z
    date available2017-11-25T07:21:11Z
    date copyright2016/10/10
    date issued2017
    identifier issn0195-0738
    identifier otherjert_139_03_032902.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236934
    description abstractThis paper presents an efficient production optimization scheme for an oil reservoir undergoing water injection by optimizing the production rate for each well. In this approach, an adaptive version of simulated annealing (ASA) is used in two steps. The optimization variables updating in the first stage is associated with a coarse grid model. In the second step, the fine grid model is used to provide more details in final solution search. The proposed method is formulated as a constrained optimization problem defining a desired objective function and a set of existing field/facility constraints. The use of polytope in the ASA ensures the best solution in each iteration. The objective function is based on net present value (NPV). The initial oil production rates for each well come from capacity and property of each well. The coarse grid block model is generated based on average horizon permeability. The proposed optimization workflow was implemented for a field sector model. The results showed that the improved rates optimize the total oil production. The optimization of oil production rates and total water injection rate leads to increase in the total oil production from 315.616 MSm3 (our initial guess) to 440.184 MSm3, and the recovery factor is increased to 26.37%; however, the initial rates are much higher than the optimized rates. Beside this, the recovery factor of optimized production schedule with optimized total injection rate is 3.26% larger than the initial production schedule with optimized total water injection rate.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Efficient Workflow for Production Allocation During Water Flooding
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4034808
    journal fristpage32902
    journal lastpage032902-10
    treeJournal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian