YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Experimental Study of Optimum Angle of Air Swirler Vanes in Liquid Fuel Burners

    Source: Journal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 003::page 32202
    Author:
    Pourhoseini, S. H.
    ,
    Asadi, Rasoul
    DOI: 10.1115/1.4035023
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The present work shows that how the angle of an air swirler vane affects the combustion characteristics of liquid fuels such as flame temperature, radiation heat flux, combustion efficiency, and pollutants' emission. It finds out an optimum angle of vane based on flame characteristics. Three vanes with angles of 0 deg, 40 deg, and 80 deg which induced low and high-swirl intensities in air stream were investigated, and the combustion characteristics of flame were quantified. The flame temperature was measured by an S-type thermocouple, and a Testo 350 XL gas analyzer was used to determine the CO and NO pollutant concentrations. Also, gravity method was used to gauge the soot concentration along the furnace, and a SBG01 water cooled heat flux sensor determined the flame radiation. The results indicate that the angle of the swirler vane has significant effects on temperature, combustion efficiency, and NO and CO pollutants' emission. Most importantly, there is an optimum angle for the swirler vane. At the optimum angle, the optimum combination of the contact area and time maximizes the mixing rate of the inlet air and the fuel jet. Consequently, at the optimum angle, the mean temperature, radiation heat flux, and combustion efficiency are higher than at small and large swirl angles and soot, CO and NOx emissions are at their minimum states.
    • Download: (892.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Experimental Study of Optimum Angle of Air Swirler Vanes in Liquid Fuel Burners

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236927
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorPourhoseini, S. H.
    contributor authorAsadi, Rasoul
    date accessioned2017-11-25T07:21:10Z
    date available2017-11-25T07:21:10Z
    date copyright2016/10/11
    date issued2017
    identifier issn0195-0738
    identifier otherjert_139_03_032202.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236927
    description abstractThe present work shows that how the angle of an air swirler vane affects the combustion characteristics of liquid fuels such as flame temperature, radiation heat flux, combustion efficiency, and pollutants' emission. It finds out an optimum angle of vane based on flame characteristics. Three vanes with angles of 0 deg, 40 deg, and 80 deg which induced low and high-swirl intensities in air stream were investigated, and the combustion characteristics of flame were quantified. The flame temperature was measured by an S-type thermocouple, and a Testo 350 XL gas analyzer was used to determine the CO and NO pollutant concentrations. Also, gravity method was used to gauge the soot concentration along the furnace, and a SBG01 water cooled heat flux sensor determined the flame radiation. The results indicate that the angle of the swirler vane has significant effects on temperature, combustion efficiency, and NO and CO pollutants' emission. Most importantly, there is an optimum angle for the swirler vane. At the optimum angle, the optimum combination of the contact area and time maximizes the mixing rate of the inlet air and the fuel jet. Consequently, at the optimum angle, the mean temperature, radiation heat flux, and combustion efficiency are higher than at small and large swirl angles and soot, CO and NOx emissions are at their minimum states.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Experimental Study of Optimum Angle of Air Swirler Vanes in Liquid Fuel Burners
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4035023
    journal fristpage32202
    journal lastpage032202-5
    treeJournal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian