YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Initial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer

    Source: Journal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 002::page 22911
    Author:
    Kim, Sungil
    ,
    Jung, Hyungsik
    ,
    Lee, Kyungbook
    ,
    Choe, Jonggeun
    DOI: 10.1115/1.4035515
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Reservoir characterization is a process of making models, which reliably predict reservoir behaviors. Ensemble Kalman filter (EnKF) is one of the fine methods for reservoir characterization with many advantages. However, it is hard to get trustworthy results in discrete grid system ensuring preservation of channel properties. There have been many schemes such as discrete cosine transform (DCT) and preservation of facies ratio (PFR) for improvement of channel reservoirs characterization. These schemes are mostly applied to 2D cases, but cannot present satisfactory results in 3D channel gas reservoirs with an aquifer because of complex production behaviors and high uncertainty of them. For a complicated 3D channel reservoir, we need reliable initial ensemble members to reduce uncertainty and stably characterize reservoir models due to the assumption of EnKF, which regards the mean of ensemble as true. In this study, initial ensemble design scheme is suggested for EnKF. The reference 3D channel gas reservoir system has 200 × 200 × 5 grid system (250 × 250 × 100 ft for x, y, and z, respectively), 15% porosity, and two facies of 100 md sand and 1 md shale. As the first step, it samples initial ensemble members, which show similar water production behaviors with the reference. Then, grid points are randomly selected for high and low 5% from the mean of sampled members. As a final step, initial ensemble members are remade using the selected data, which are assumed as additional known data. This proposed method reliably characterizes 3D channel reservoirs with an aquifer.
    • Download: (4.763Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Initial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236913
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorKim, Sungil
    contributor authorJung, Hyungsik
    contributor authorLee, Kyungbook
    contributor authorChoe, Jonggeun
    date accessioned2017-11-25T07:21:09Z
    date available2017-11-25T07:21:09Z
    date copyright2017/16/1
    date issued2017
    identifier issn0195-0738
    identifier otherjert_139_02_022911.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236913
    description abstractReservoir characterization is a process of making models, which reliably predict reservoir behaviors. Ensemble Kalman filter (EnKF) is one of the fine methods for reservoir characterization with many advantages. However, it is hard to get trustworthy results in discrete grid system ensuring preservation of channel properties. There have been many schemes such as discrete cosine transform (DCT) and preservation of facies ratio (PFR) for improvement of channel reservoirs characterization. These schemes are mostly applied to 2D cases, but cannot present satisfactory results in 3D channel gas reservoirs with an aquifer because of complex production behaviors and high uncertainty of them. For a complicated 3D channel reservoir, we need reliable initial ensemble members to reduce uncertainty and stably characterize reservoir models due to the assumption of EnKF, which regards the mean of ensemble as true. In this study, initial ensemble design scheme is suggested for EnKF. The reference 3D channel gas reservoir system has 200 × 200 × 5 grid system (250 × 250 × 100 ft for x, y, and z, respectively), 15% porosity, and two facies of 100 md sand and 1 md shale. As the first step, it samples initial ensemble members, which show similar water production behaviors with the reference. Then, grid points are randomly selected for high and low 5% from the mean of sampled members. As a final step, initial ensemble members are remade using the selected data, which are assumed as additional known data. This proposed method reliably characterizes 3D channel reservoirs with an aquifer.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInitial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4035515
    journal fristpage22911
    journal lastpage022911-10
    treeJournal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian