YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol

    Source: Journal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 002::page 22204
    Author:
    Nord, Alex J.
    ,
    Hwang, Jeffrey T.
    ,
    Northrop, William F.
    DOI: 10.1115/1.4034288
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Aftermarket dual-fuel injection systems in diesel engines using hydrous ethanol as secondary fuel have been developed as a means to lower emissions from older diesel-powered equipment. However, our previous work has shown that the emissions benefits of currently available aftermarket intake fumigation injection systems can be inconsistent with manufacturer claims. Our current study evaluates a newly developed aftermarket dual-fuel system that incorporates a fuel heating system and port fuel injection (PFI). This paper describes an experimental investigation of engine-out emissions from a John Deere 4045HF475 Tier 2 engine with port injection of 180 proof (90% ethanol by volume) hydrous ethanol. The engine was retrofitted with a custom fuel heat exchanger to heat the hydrous ethanol to a range of 46–79 °C for helping to improve fuel vaporization in the intake port. PFI duration was controlled using engine speed and throttle position as inputs to achieve a desired fumigant energy fraction (FEF), defined as the amount of energy provided by the hydrous ethanol based on lower heating value (LHV) over the total fuel energy provided to the engine. Data was collected over a range of FEF with direct injected diesel for eight operating modes comparing heated versus unheated hydrous ethanol. Results of the study indicate that as FEF increases, NO emissions decrease, while NO2, CO, THC, and unburned ethanol emissions increase. In addition, it was found that preheating the ethanol using engine coolant prior to injection has little benefit on engine-out emissions. The work shows that the implemented aftermarket dual-fuel PFI system can achieve FEF rates up to 37% at low engine load while yielding modest benefits in emissions.
    • Download: (1.902Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236902
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorNord, Alex J.
    contributor authorHwang, Jeffrey T.
    contributor authorNorthrop, William F.
    date accessioned2017-11-25T07:21:08Z
    date available2017-11-25T07:21:08Z
    date copyright2016/17/8
    date issued2017
    identifier issn0195-0738
    identifier otherjert_139_02_022204.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236902
    description abstractAftermarket dual-fuel injection systems in diesel engines using hydrous ethanol as secondary fuel have been developed as a means to lower emissions from older diesel-powered equipment. However, our previous work has shown that the emissions benefits of currently available aftermarket intake fumigation injection systems can be inconsistent with manufacturer claims. Our current study evaluates a newly developed aftermarket dual-fuel system that incorporates a fuel heating system and port fuel injection (PFI). This paper describes an experimental investigation of engine-out emissions from a John Deere 4045HF475 Tier 2 engine with port injection of 180 proof (90% ethanol by volume) hydrous ethanol. The engine was retrofitted with a custom fuel heat exchanger to heat the hydrous ethanol to a range of 46–79 °C for helping to improve fuel vaporization in the intake port. PFI duration was controlled using engine speed and throttle position as inputs to achieve a desired fumigant energy fraction (FEF), defined as the amount of energy provided by the hydrous ethanol based on lower heating value (LHV) over the total fuel energy provided to the engine. Data was collected over a range of FEF with direct injected diesel for eight operating modes comparing heated versus unheated hydrous ethanol. Results of the study indicate that as FEF increases, NO emissions decrease, while NO2, CO, THC, and unburned ethanol emissions increase. In addition, it was found that preheating the ethanol using engine coolant prior to injection has little benefit on engine-out emissions. The work shows that the implemented aftermarket dual-fuel PFI system can achieve FEF rates up to 37% at low engine load while yielding modest benefits in emissions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEmissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4034288
    journal fristpage22204
    journal lastpage022204-11
    treeJournal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian