YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Damköhler Number on Methane/Oxygen Tubular Combustion Diluted by N2 and CO2

    Source: Journal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 001::page 12206
    Author:
    Shi, Baolu
    ,
    Chu, Qingzhao
    ,
    Chen, Run
    DOI: 10.1115/1.4035362
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To fundamentally elucidate the mixing and its effects on the characteristics of methane/oxygen flame in a rapidly mixed tubular flame burner, experiments were conducted under various oxygen mole fractions and flow rates. Two inert gases of nitrogen and carbon dioxide were used, respectively. The inert gas was added to both the oxidizer and fuel slits to maintain the oxidizer/fuel injection velocity ratio near unity. Based on flow visualization, the mixing process around injection slits and that in the axial downstream were discussed. The Damköhler number (Da1), defined as the ratio of molecular mixing time to reaction time, was selected as a parameter to quantitatively examine the criterion for the establishment of tubular flame from low to ultrahigh oxygen mole fractions (0.21–0.86). The mixing around slit exit determined the tubular flame establishment. Due to a flow time between two neighboring injection slits of fuel and oxidizer, part of the fuel was mixed in the downstream swirling flow, resulting in luminous helical structures. Hence, the Damköhler number (Da2), defined as the flow to the reaction time ratio, was examined. Detailed observations indicated that when Da2 was smaller than unity, the flame was uniform in luminosity, whereas the flame was nonuniform when Da2 ≥ 1. The value of Da2 was about 1.5 times as Da1; however, they correspond to different mixing zones and Da2 can be more easily calculated. The differences in flame stability between N2 and CO2 diluted combustion were also studied.
    • Download: (7.716Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Damköhler Number on Methane/Oxygen Tubular Combustion Diluted by N2 and CO2

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236886
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorShi, Baolu
    contributor authorChu, Qingzhao
    contributor authorChen, Run
    date accessioned2017-11-25T07:21:06Z
    date available2017-11-25T07:21:06Z
    date copyright2016/21/12
    date issued2017
    identifier issn0195-0738
    identifier otherjert_139_01_012206.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236886
    description abstractTo fundamentally elucidate the mixing and its effects on the characteristics of methane/oxygen flame in a rapidly mixed tubular flame burner, experiments were conducted under various oxygen mole fractions and flow rates. Two inert gases of nitrogen and carbon dioxide were used, respectively. The inert gas was added to both the oxidizer and fuel slits to maintain the oxidizer/fuel injection velocity ratio near unity. Based on flow visualization, the mixing process around injection slits and that in the axial downstream were discussed. The Damköhler number (Da1), defined as the ratio of molecular mixing time to reaction time, was selected as a parameter to quantitatively examine the criterion for the establishment of tubular flame from low to ultrahigh oxygen mole fractions (0.21–0.86). The mixing around slit exit determined the tubular flame establishment. Due to a flow time between two neighboring injection slits of fuel and oxidizer, part of the fuel was mixed in the downstream swirling flow, resulting in luminous helical structures. Hence, the Damköhler number (Da2), defined as the flow to the reaction time ratio, was examined. Detailed observations indicated that when Da2 was smaller than unity, the flame was uniform in luminosity, whereas the flame was nonuniform when Da2 ≥ 1. The value of Da2 was about 1.5 times as Da1; however, they correspond to different mixing zones and Da2 can be more easily calculated. The differences in flame stability between N2 and CO2 diluted combustion were also studied.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Damköhler Number on Methane/Oxygen Tubular Combustion Diluted by N2 and CO2
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4035362
    journal fristpage12206
    journal lastpage012206-11
    treeJournal of Energy Resources Technology:;2017:;volume( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian