YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prediction of Direct Methanol Fuel Cell Stack Performance Using Artificial Neural Network

    Source: Journal of Electrochemical Energy Conversion and Storage:;2017:;volume( 014 ):;issue: 003::page 31008
    Author:
    Rafe Biswas, M. A.
    ,
    Robinson, Melvin D.
    DOI: 10.1115/1.4036811
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A direct methanol fuel cell (DMFC) converts liquid fuel into electricity to power devices, while operating at relatively low temperatures and producing virtually no greenhouse gases. Since DMFC performance characteristics are inherently complex, it can be postulated that artificial neural networks (NN) represent a marked improvement in prediction capabilities. In this work, an artificial NN is employed to predict the performance of a DMFC under various operating conditions. Input variables for the analysis consist of methanol concentration, temperature, current density, number of cells, and anode flow rate. The addition of the two latter variables allows for a more distinctive model when compared to prior NN models. The key performance indicator of our NN model is cell voltage, which is an average voltage across the stack and ranges from 0 to 0.8 V. Experimental studies were conducted using DMFC stacks with membrane electrode assemblies consisting of an additional unique liquid barrier layer to minimize water loss to atmosphere. To determine the best fit to the experimental data, the model is trained using two second-order training algorithms: OWO-Newton and Levenberg–Marquardt (LM). The topology of OWO-Newton algorithm is slightly different from that of LM algorithm by employing bypass weights. The application of NN shows rapid construction of a predictive model of cell voltage for varying operating conditions with an accuracy on the order of 10−4, which can be comparable to literature. The coefficient of determination of the optimal model results using either algorithm were greater than 0.998.
    • Download: (848.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prediction of Direct Methanol Fuel Cell Stack Performance Using Artificial Neural Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236812
    Collections
    • Journal of Electrochemical Energy Conversion and Storage

    Show full item record

    contributor authorRafe Biswas, M. A.
    contributor authorRobinson, Melvin D.
    date accessioned2017-11-25T07:20:59Z
    date available2017-11-25T07:20:59Z
    date copyright2017/21/6
    date issued2017
    identifier issn2381-6872
    identifier otherjeecs_014_03_031008.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236812
    description abstractA direct methanol fuel cell (DMFC) converts liquid fuel into electricity to power devices, while operating at relatively low temperatures and producing virtually no greenhouse gases. Since DMFC performance characteristics are inherently complex, it can be postulated that artificial neural networks (NN) represent a marked improvement in prediction capabilities. In this work, an artificial NN is employed to predict the performance of a DMFC under various operating conditions. Input variables for the analysis consist of methanol concentration, temperature, current density, number of cells, and anode flow rate. The addition of the two latter variables allows for a more distinctive model when compared to prior NN models. The key performance indicator of our NN model is cell voltage, which is an average voltage across the stack and ranges from 0 to 0.8 V. Experimental studies were conducted using DMFC stacks with membrane electrode assemblies consisting of an additional unique liquid barrier layer to minimize water loss to atmosphere. To determine the best fit to the experimental data, the model is trained using two second-order training algorithms: OWO-Newton and Levenberg–Marquardt (LM). The topology of OWO-Newton algorithm is slightly different from that of LM algorithm by employing bypass weights. The application of NN shows rapid construction of a predictive model of cell voltage for varying operating conditions with an accuracy on the order of 10−4, which can be comparable to literature. The coefficient of determination of the optimal model results using either algorithm were greater than 0.998.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePrediction of Direct Methanol Fuel Cell Stack Performance Using Artificial Neural Network
    typeJournal Paper
    journal volume14
    journal issue3
    journal titleJournal of Electrochemical Energy Conversion and Storage
    identifier doi10.1115/1.4036811
    journal fristpage31008
    journal lastpage031008-7
    treeJournal of Electrochemical Energy Conversion and Storage:;2017:;volume( 014 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian