YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parallel Computing Scheme for Three-Dimensional Long Train System Dynamics

    Source: Journal of Computational and Nonlinear Dynamics:;2017:;volume( 012 ):;issue: 004::page 44502
    Author:
    Wu, Qing
    ,
    Spiryagin, Maksym
    ,
    Cole, Colin
    DOI: 10.1115/1.4035484
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Simulations of three-dimensional train system dynamics for long freight railway trains with consideration being given to all degrees-of-freedom of all essential components of all vehicles have not been reported due to the challenge of long computing time. This paper developed a parallel computing scheme for three-dimensional train system dynamics. Key modeling techniques were discussed, which include modeling of longitudinal train dynamics, single vehicle system dynamics and multibody coupler systems. Assume that there are n vehicles in the train, then, n + 2 cores are needed. The first core (core 0) is used as the master core; the last core (core n + 1) is used for air brake simulation; the rest of the cores (core 1 to core n) are used for the computing of single vehicle system dynamics for all n vehicles in parallel. During the simulation, the master core collects the results from core n + 1 and then sends the air brake pressures and knuckle forces to core 1 to core n. core 1 to core n execute vehicle system dynamics simulations and then send the coupler kinematics to the master core. The details of the parallel computing scheme were presented in this paper. The feasibility of the computing scheme has been demonstrated by a simulation of a long heavy haul train that has 214 vehicles. A 3 h train trip was simulated; 216 cores were used. The accumulated computing time of all cores was about 253 days, while the wall-clock time was about 29 h. Such computing speed has made the simulations of three-dimensional train system dynamics practical.
    • Download: (2.097Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parallel Computing Scheme for Three-Dimensional Long Train System Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236425
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorWu, Qing
    contributor authorSpiryagin, Maksym
    contributor authorCole, Colin
    date accessioned2017-11-25T07:20:24Z
    date available2017-11-25T07:20:24Z
    date copyright2017/20/1
    date issued2017
    identifier issn1555-1415
    identifier othercnd_012_04_044502.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236425
    description abstractSimulations of three-dimensional train system dynamics for long freight railway trains with consideration being given to all degrees-of-freedom of all essential components of all vehicles have not been reported due to the challenge of long computing time. This paper developed a parallel computing scheme for three-dimensional train system dynamics. Key modeling techniques were discussed, which include modeling of longitudinal train dynamics, single vehicle system dynamics and multibody coupler systems. Assume that there are n vehicles in the train, then, n + 2 cores are needed. The first core (core 0) is used as the master core; the last core (core n + 1) is used for air brake simulation; the rest of the cores (core 1 to core n) are used for the computing of single vehicle system dynamics for all n vehicles in parallel. During the simulation, the master core collects the results from core n + 1 and then sends the air brake pressures and knuckle forces to core 1 to core n. core 1 to core n execute vehicle system dynamics simulations and then send the coupler kinematics to the master core. The details of the parallel computing scheme were presented in this paper. The feasibility of the computing scheme has been demonstrated by a simulation of a long heavy haul train that has 214 vehicles. A 3 h train trip was simulated; 216 cores were used. The accumulated computing time of all cores was about 253 days, while the wall-clock time was about 29 h. Such computing speed has made the simulations of three-dimensional train system dynamics practical.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParallel Computing Scheme for Three-Dimensional Long Train System Dynamics
    typeJournal Paper
    journal volume12
    journal issue4
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4035484
    journal fristpage44502
    journal lastpage044502-7
    treeJournal of Computational and Nonlinear Dynamics:;2017:;volume( 012 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian