YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Analysis of Fractional Neutral Functional Differential Equations Based on Generalized Volterra-Integral Operators

    Source: Journal of Computational and Nonlinear Dynamics:;2017:;volume( 012 ):;issue: 003::page 31018
    Author:
    Ding, Xiao-Li
    ,
    Nieto, Juan J.
    DOI: 10.1115/1.4035267
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We use waveform relaxation (WR) method to solve numerically fractional neutral functional differential equations and mainly consider the convergence of the numerical method with the help of a generalized Volterra-integral operator associated with the Mittag–Leffler function. We first give some properties of the integral operator. Using the proposed properties, we establish the convergence condition of the numerical method. Finally, we provide a new way to prove the convergence of waveform relaxation method for integer-order neutral functional differential equation, which is a special case of fractional neutral functional differential equation. Compared to the existing proof in the literature, our proof is concise and original.
    • Download: (228.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Analysis of Fractional Neutral Functional Differential Equations Based on Generalized Volterra-Integral Operators

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236395
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorDing, Xiao-Li
    contributor authorNieto, Juan J.
    date accessioned2017-11-25T07:20:21Z
    date available2017-11-25T07:20:21Z
    date copyright2017/11/1
    date issued2017
    identifier issn1555-1415
    identifier othercnd_012_03_031018.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236395
    description abstractWe use waveform relaxation (WR) method to solve numerically fractional neutral functional differential equations and mainly consider the convergence of the numerical method with the help of a generalized Volterra-integral operator associated with the Mittag–Leffler function. We first give some properties of the integral operator. Using the proposed properties, we establish the convergence condition of the numerical method. Finally, we provide a new way to prove the convergence of waveform relaxation method for integer-order neutral functional differential equation, which is a special case of fractional neutral functional differential equation. Compared to the existing proof in the literature, our proof is concise and original.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Analysis of Fractional Neutral Functional Differential Equations Based on Generalized Volterra-Integral Operators
    typeJournal Paper
    journal volume12
    journal issue3
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4035267
    journal fristpage31018
    journal lastpage031018-7
    treeJournal of Computational and Nonlinear Dynamics:;2017:;volume( 012 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian