YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Dynamic Response of Carbon Nanotube Nanocomposite Microbeams

    Source: Journal of Computational and Nonlinear Dynamics:;2017:;volume( 012 ):;issue: 003::page 31007
    Author:
    Cetraro, Marek
    ,
    Lacarbonara, Walter
    ,
    Formica, Giovanni
    DOI: 10.1115/1.4034736
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The nonlinear dynamic response of nanocomposite microcantilevers is investigated. The microbeams are made of a polymeric hosting matrix (e.g., epoxy, polyether ether ketone (PEEK), and polycarbonate) reinforced by longitudinally aligned carbon nanotubes (CNTs). The 3D transversely isotropic elastic constitutive equations for the nanocomposite material are based on the equivalent inclusion theory of Eshelby and the Mori–Tanaka homogenization approach. The beam-generalized stress resultants, obtained in accordance with the Saint-Venant principle, are expressed in terms of the generalized strains making use of the equivalent constitutive laws. These equations depend on both the hosting matrix and CNTs elastic properties as well as on the CNTs volume fraction, geometry, and orientation. The description of the geometry of deformation and the balance equations for the microbeams are based on the geometrically exact Euler–Bernoulli beam theory specialized to incorporate the additional inextensibility constraint due to the relevant boundary conditions of microcantilevers. The obtained equations of motion are discretized via the Galerkin method retaining an arbitrary number of eigenfunctions. A path following algorithm is then employed to obtain the nonlinear frequency response for different excitation levels and for increasing volume fractions of carbon nanotubes. The fold lines delimiting the multistability regions of the frequency responses are also discussed. The volume fraction is shown to play a key role in shifting the linear frequencies of the beam flexural modes to higher values. The CNT volume fraction further shifts the fold lines to higher excitation amplitudes, while it does not affect the backbones of the modes (i.e., oscillation frequency–amplitude curves).
    • Download: (900.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Dynamic Response of Carbon Nanotube Nanocomposite Microbeams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236383
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorCetraro, Marek
    contributor authorLacarbonara, Walter
    contributor authorFormica, Giovanni
    date accessioned2017-11-25T07:20:20Z
    date available2017-11-25T07:20:20Z
    date copyright2016/5/12
    date issued2017
    identifier issn1555-1415
    identifier othercnd_012_03_031007.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236383
    description abstractThe nonlinear dynamic response of nanocomposite microcantilevers is investigated. The microbeams are made of a polymeric hosting matrix (e.g., epoxy, polyether ether ketone (PEEK), and polycarbonate) reinforced by longitudinally aligned carbon nanotubes (CNTs). The 3D transversely isotropic elastic constitutive equations for the nanocomposite material are based on the equivalent inclusion theory of Eshelby and the Mori–Tanaka homogenization approach. The beam-generalized stress resultants, obtained in accordance with the Saint-Venant principle, are expressed in terms of the generalized strains making use of the equivalent constitutive laws. These equations depend on both the hosting matrix and CNTs elastic properties as well as on the CNTs volume fraction, geometry, and orientation. The description of the geometry of deformation and the balance equations for the microbeams are based on the geometrically exact Euler–Bernoulli beam theory specialized to incorporate the additional inextensibility constraint due to the relevant boundary conditions of microcantilevers. The obtained equations of motion are discretized via the Galerkin method retaining an arbitrary number of eigenfunctions. A path following algorithm is then employed to obtain the nonlinear frequency response for different excitation levels and for increasing volume fractions of carbon nanotubes. The fold lines delimiting the multistability regions of the frequency responses are also discussed. The volume fraction is shown to play a key role in shifting the linear frequencies of the beam flexural modes to higher values. The CNT volume fraction further shifts the fold lines to higher excitation amplitudes, while it does not affect the backbones of the modes (i.e., oscillation frequency–amplitude curves).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Dynamic Response of Carbon Nanotube Nanocomposite Microbeams
    typeJournal Paper
    journal volume12
    journal issue3
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4034736
    journal fristpage31007
    journal lastpage031007-9
    treeJournal of Computational and Nonlinear Dynamics:;2017:;volume( 012 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian