YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lie Group Forward Dynamics of Fixed-Wing Aircraft With Singularity-Free Attitude Reconstruction on SO(3)

    Source: Journal of Computational and Nonlinear Dynamics:;2017:;volume( 012 ):;issue: 002::page 21009
    Author:
    Terze, Zdravko
    ,
    Zlatar, Dario
    ,
    Vrdoljak, Milan
    ,
    Pandža, Viktor
    DOI: 10.1115/1.4034398
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper proposes an approach to formulation and integration of the governing equations for aircraft flight simulation that is based on a Lie group setting, and leads to a nonsingular coordinate-free numerical integration. Dynamical model of an aircraft is formulated in Lie group state space form and integrated by ordinary-differential-equation (ODE)-on-Lie groups Munthe-Kaas (MK) type of integrator. By following such an approach, it is assured that kinematic singularities, which are unavoidable if a three-angles-based rotation parameterization is applied for the whole 3D rotation domain, do not occur in the proposed noncoordinate formulation form. Moreover, in contrast to the quaternion rotation parameterization that imposes additional algebraic constraint and leads to integration of differential-algebraic equations (DAEs) (with necessary algebraic-equation-violation stabilization step), the proposed formulation leads to a nonredundant ODE integration in minimal form. To this end, this approach combines benefits of both traditional approaches to aircraft simulation (i.e., three angles parameterization and quaternions), while at the same time it avoids related drawbacks of the classical models. Besides solving kinematic singularity problem without introducing DAEs, the proposed formulation also exhibits numerical advantages in terms of better accuracy when longer integration steps are applied during simulation and when aircraft motion pattern comprises steady rotational component of its 3D motion. This is due to the fact that a Lie group setting and applied MK integrator determine vehicle orientation on the basis of integration of local (tangent, nonlinear) kinematical differential equations (KDEs) that model process of 3D rotations (i.e., vehicle attitude reconstruction on nonlinear manifold SO(3)) more accurately than “global” KDEs of the classical formulations (that are linear in differential equations part in the case of standard quaternion models).
    • Download: (1.261Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lie Group Forward Dynamics of Fixed-Wing Aircraft With Singularity-Free Attitude Reconstruction on SO(3)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236375
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorTerze, Zdravko
    contributor authorZlatar, Dario
    contributor authorVrdoljak, Milan
    contributor authorPandža, Viktor
    date accessioned2017-11-25T07:20:20Z
    date available2017-11-25T07:20:20Z
    date copyright2016/2/12
    date issued2017
    identifier issn1555-1415
    identifier othercnd_012_02_021009.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236375
    description abstractThis paper proposes an approach to formulation and integration of the governing equations for aircraft flight simulation that is based on a Lie group setting, and leads to a nonsingular coordinate-free numerical integration. Dynamical model of an aircraft is formulated in Lie group state space form and integrated by ordinary-differential-equation (ODE)-on-Lie groups Munthe-Kaas (MK) type of integrator. By following such an approach, it is assured that kinematic singularities, which are unavoidable if a three-angles-based rotation parameterization is applied for the whole 3D rotation domain, do not occur in the proposed noncoordinate formulation form. Moreover, in contrast to the quaternion rotation parameterization that imposes additional algebraic constraint and leads to integration of differential-algebraic equations (DAEs) (with necessary algebraic-equation-violation stabilization step), the proposed formulation leads to a nonredundant ODE integration in minimal form. To this end, this approach combines benefits of both traditional approaches to aircraft simulation (i.e., three angles parameterization and quaternions), while at the same time it avoids related drawbacks of the classical models. Besides solving kinematic singularity problem without introducing DAEs, the proposed formulation also exhibits numerical advantages in terms of better accuracy when longer integration steps are applied during simulation and when aircraft motion pattern comprises steady rotational component of its 3D motion. This is due to the fact that a Lie group setting and applied MK integrator determine vehicle orientation on the basis of integration of local (tangent, nonlinear) kinematical differential equations (KDEs) that model process of 3D rotations (i.e., vehicle attitude reconstruction on nonlinear manifold SO(3)) more accurately than “global” KDEs of the classical formulations (that are linear in differential equations part in the case of standard quaternion models).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLie Group Forward Dynamics of Fixed-Wing Aircraft With Singularity-Free Attitude Reconstruction on SO(3)
    typeJournal Paper
    journal volume12
    journal issue2
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4034398
    journal fristpage21009
    journal lastpage021009-11
    treeJournal of Computational and Nonlinear Dynamics:;2017:;volume( 012 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian