YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation Analysis of Linear Quadratic Regulator Control of Sagittal-Plane Human Walking—Implications for Exoskeletons

    Source: Journal of Biomechanical Engineering:;2017:;volume( 139 ):;issue: 010::page 101009
    Author:
    Nataraj, Raviraj
    ,
    van den Bogert, Antonie J.
    DOI: 10.1115/1.4037560
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The linear quadratic regulator (LQR) is a classical optimal control approach that can regulate gait dynamics about target kinematic trajectories. Exoskeletons to restore gait function have conventionally utilized time-varying proportional-derivative (PD) control of leg joints. But, these PD parameters are not uniquely optimized for whole-body (full-state) performance. The objective of this study was to investigate the effectiveness of LQR full-state feedback compared to PD control to maintain bipedal walking of a sagittal-plane computational model against force disturbances. Several LQR controllers were uniquely solved with feedback gains optimized for different levels of tracking capability versus control effort. The main implications to future exoskeleton control systems include (1) which LQR controllers out-perform PD controllers in walking maintenance and effort, (2) verifying that LQR desirably produces joint torques that oppose rapidly growing joint state errors, and (3) potentially equipping accurate sensing systems for nonjoint states such as hip-position and torso orientation. The LQR controllers capable of longer walk times than respective PD controllers also required less control effort. During sudden leg collapse, LQR desirably behaved like PD by generating feedback torques that opposed the direction of leg-joint errors. Feedback from nonjoint states contributed to over 50% of the LQR joint torques and appear critical for whole-body LQR control. While LQR control poses implementation challenges, such as more sensors for full-state feedback and operation near the desired trajectories, it offers significant performance advantages over PD control.
    • Download: (1.707Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation Analysis of Linear Quadratic Regulator Control of Sagittal-Plane Human Walking—Implications for Exoskeletons

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236314
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorNataraj, Raviraj
    contributor authorvan den Bogert, Antonie J.
    date accessioned2017-11-25T07:20:15Z
    date available2017-11-25T07:20:15Z
    date copyright2017/22/8
    date issued2017
    identifier issn0148-0731
    identifier otherbio_139_10_101009.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236314
    description abstractThe linear quadratic regulator (LQR) is a classical optimal control approach that can regulate gait dynamics about target kinematic trajectories. Exoskeletons to restore gait function have conventionally utilized time-varying proportional-derivative (PD) control of leg joints. But, these PD parameters are not uniquely optimized for whole-body (full-state) performance. The objective of this study was to investigate the effectiveness of LQR full-state feedback compared to PD control to maintain bipedal walking of a sagittal-plane computational model against force disturbances. Several LQR controllers were uniquely solved with feedback gains optimized for different levels of tracking capability versus control effort. The main implications to future exoskeleton control systems include (1) which LQR controllers out-perform PD controllers in walking maintenance and effort, (2) verifying that LQR desirably produces joint torques that oppose rapidly growing joint state errors, and (3) potentially equipping accurate sensing systems for nonjoint states such as hip-position and torso orientation. The LQR controllers capable of longer walk times than respective PD controllers also required less control effort. During sudden leg collapse, LQR desirably behaved like PD by generating feedback torques that opposed the direction of leg-joint errors. Feedback from nonjoint states contributed to over 50% of the LQR joint torques and appear critical for whole-body LQR control. While LQR control poses implementation challenges, such as more sensors for full-state feedback and operation near the desired trajectories, it offers significant performance advantages over PD control.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSimulation Analysis of Linear Quadratic Regulator Control of Sagittal-Plane Human Walking—Implications for Exoskeletons
    typeJournal Paper
    journal volume139
    journal issue10
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4037560
    journal fristpage101009
    journal lastpage101009-11
    treeJournal of Biomechanical Engineering:;2017:;volume( 139 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian